Xavier参数初始化方法

目录

1 梯度消失与梯度爆炸

2 Xavier方法​​​​​​​

1 梯度消失与梯度爆炸

这是一个深度学习领域遇到的老问题了,即使是现在,任何一个新提出的模型,无论是MLP、CNN、还是RNN,随着深度的加深,这两个问题变得尤为严重。

  • 梯度消失是指在深度学习训练的过程中,梯度随着链式求导逐层传递逐层减小,最后趋近于0,导致对某些层的训练失效;
  • 梯度爆炸与梯度消失相反,梯度随着链式求导逐层传递逐层增大,最后趋于无穷,导致某些层无法收敛;

2 Xavier方法

接下来的推导基于假设:

  • 激活函数在0周围的导数接近1(比如tanh);
  • 偏置项b初始化为0,期望为0
  • 参数初始化期望均为0

Xavier的目的:

  • 在前向传播的时候满足 ,即对于每一个结点,它的输出的方差都相同;
  • 用梯度反向传播的时候,,,和前向传播时一样希望结点输出的方差都相同;
  • 前后传播的方差都相同

        对于神经网络中的layer i,假设它的输入是,激活函数为 f ,满足,经过激活函数后的输出为

         假设在初始化之后,处于激活函数的线性区域,即 ,即

        因为 ,若 都是0,那么

(1)前向传播

        在 W , Z , b 独立同分布,且 为0的假设下,

        所以

         这里是 layer i 的第k个node的输出,为 layer i−1的第j个node的输出, 为 layer i−1与  layer i第k个node的连接权重。

        我们希望的是在前向传播的时候满足 ,即对于每一个结点,它的输出的方差都相同,所以需要满足,所以 可以从方差为的正态分布从采样得到。

 (2)后向传播

        当我们用梯度反向传播的时候, ,和前向传播时一样希望结点输出的方差都相同,只是这时候需要从方差为的正态分布中采样得到。

 (3)均相同

        所以按照上述思路,我们无法保证前后传播的方差都相同,所以选择 从方差为的正态分布中采样得到,或者从,的均匀分布中得到(均匀分布的方差为,边界可以按此公式推导得到)

        但是之前有假设激活函数在0周围的导数接近1,所以忽略了激活函数的作用,不同激活函数在0周围的导数不同,需要给方差乘上导数的倒数:

神经网络初始化方法-Xavier/kaiming_转行的炼丹师的博客-CSDN博客

Xavier神经网络参数初始化方法 - 知乎

  

Xavier初始化方法是一种常用的参数初始化方法,用于初始化神经网络的权重。它的目标是使得前向传播和反向传播过程中的梯度保持一致,从而更好地进行模型训练。 Xavier初始化方法的核心思想是根据权重矩阵的输入和输出维度来确定合适的初始化范围。通常情况下,权重矩阵的元素应该服从一个均匀分布,使得输入和输出的方差保持一致。 具体来说,对于一个全连接层的权重矩阵W(形状为(output_dim, input_dim)),Xavier初始化方法可以通过以下方式进行: 1. 均匀分布: - 从均匀分布U(-a, a)中随机采样,其中a是根据输入和输出维度计算得到的上界。 2. 上界计算: - 对于具有输入维度为input_dim和输出维度为output_dim的权重矩阵W,上界a可以通过以下公式计算得到: ``` a = sqrt(6 / (input_dim + output_dim)) ``` 3. 初始化权重: - 使用均匀分布U(-a, a)来随机初始化权重矩阵W。 Xavier初始化方法可以在一定程度上避免梯度消失或梯度爆炸的问题,有助于提高模型的收敛速度和性能。它在很多深度学习框架和库中都有内置的实现方式,可以方便地应用于各种神经网络模型。 需要注意的是,Xavier初始化方法适用于激活函数为线性函数或具有类似线性性质的激活函数(如tanh、sigmoid等)。对于非线性激活函数(如ReLU、LeakyReLU等),其他初始化方法(如He初始化)可能更为合适。因此,在选择参数初始化方法时,要结合具体的激活函数和模型结构来进行选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值