施密特正交化_线性代数预习自学笔记-17:格拉姆-施密特正交化与QR分解

本文详细介绍了格拉姆-施密特正交化过程,用于在任意内积空间中构建规范正交基,以及在欧式空间中的QR分解,讨论了其在最小二乘问题中的应用。此外,还提到了改进的格拉姆-施密特正交化方法,以减少有限精度计算时的舍入误差。
摘要由CSDN通过智能技术生成

上一篇:线性代数预习自学笔记-16:规范正交基与正交矩阵

一、格拉姆-施密特正交化

上一篇中我们讲到,一组规范正交基可以大大简化最小二乘问题的求解过程;但是,在某个内积空间中找到一组规范正交基并不一定是容易的。在欧几里得向量空间

中,我们容易发现标准基
是一组单位正交基;而对于定义了内积

的多项式空间

,在上一篇中我们用待定系数法求得它的一组单位正交基为

这一结果并不平凡,而且待定系数法也不适用于其他一些内积空间。因此,我们需要找到一个较为普适的方法,使得我们能在任意给定的内积空间中,有效地求出该空间的一组规范正交基。

一个自然的思路是,我们先找到一组一般的基

,然后再想办法将其规范正交化。也就是说,我们将构造出一组规范正交基
,使得

而这个构造过程将会依赖于

本身。

由于规范化一个向量是容易的(只要将这个向量除以它的模长即可),且只要一组向量相互正交,它们必然线性无关,所以这个问题的关键点就落在了“正交”上。

我们依然先把问题限制在容易直观化的情况上,比如标准内积空间

。我们可以把这个空间想象成一个平面,它的一组基必然是两个互成角度的不平行的(从原点出发的)向量,设为

我们先将

规范化为向量
。现在,我们需要“调整”
使得它与
正交。这里有一个简单的方法:我们求出
方向上的投影向量
,则
必然与
正交。因为这个过程实质上是对
和正交于
的方向上进行“正交分解”,然后“舍弃”了
方向上的分量
,只留下其在正交于
的方向上的分量
,这个向量自然与
正交(严谨的证明可以由定理15.2直接给出)。随后我们只需将
规范化即可。

我们再考虑空间

,它可以直观化地被理解为三维空间。设
的一组基为
,我们可以先用上面的方法将
调整为规范正交集
,此时

接下来我们要调整

使其与
都正交。
可视为空间中一个过原点的平面,因此类似于前面的情况,我们只需要将
往子空间
上投影,得到投影向量
,那么
就是与
都正交的向量。这同样可以从“正交分解”的角度直观理解。例如,如果
,那么这个过程就是将
平面和
轴上进行正交分解,最后只留下
轴方向上的分量,这个向量显然正交于
平面。

那么我们要如何求

呢?注意到
已经是
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值