xgboost调参_模型搭建方法——XGBoost函数使用整合篇

本文重点介绍了在多因子模型中使用XGBoost的参数调整,包括n_estimators, learning_rate, max_depth等关键参数的作用和调优策略。此外,还讨论了模型调参方法如随机网格寻优,并提到了在交叉验证时选择时序交叉验证的重要性,以及TimeSeriesSplit的相关参数设置。" 103539608,8497695,"C++STL迭代器适配器详解:Reverse, Insert, Stream, Move迭代器
摘要由CSDN通过智能技术生成

XGBoost作为机器学习的一个基础方法,在多因子模型中作为一个模型被使用,是一个非常有效的非线性训练方法。Python中也有很多库来帮助我们实现模型的训练过程。

这篇文章不介绍XGBoost的原理,主要介绍在多因子模型中,使用XGBoost模型训练时候的一些参数调整和问题。主要利用Python的函数包来实现。

一、模型参数

clf = XGBClassifier(learning_rate=0.05,
n_estimators=500, # 树的个数--1000棵树建立xgboost
max_depth=6, # 树的深度
min_child_weight = 1, # 叶子节点最小权重
gamma=0.1, # 惩罚项中叶子结点个数前的参数
subsample=0.8, # 随机选择80%样本建立决策树
colsample_btree=0.8, # 随机选择80%特征建立决策树
objective='binary:logistic',# 指定损失函数
scale_pos_weight=5, # 解决样本个数不平衡的问题
seed=1000,
nthread=20, # CPU线程数
)
clf.fit(X,y,eval_metric='auc')#训练clf
clf.predict(X_test) #输出预测结果
clf.predict_proba(x_test) #输出预测的概率值

(1)n_estimators:总迭代次数,决策树的个数

(2)learning_rate:学习率,控制每次迭代更新权重时的步长

    • 值越小,训练越慢

    • 默认0.3,典型值为0.01-0.2

(3)max_depth:决策树的深度

    • 值越大,越容易过拟合;值越小,越容易欠拟合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值