计算机图文报告病理是什么,看不懂自己的病理报告单?我来告诉你怎么看

病理报告单是确诊肿瘤的重要依据。本文介绍病理报告单的四大类型及其含义,并以肉芽肿性小叶性乳腺炎为例,详细解析报告单内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原标题:看不懂自己的病理报告单?我来告诉你怎么看

咱们患者朋友们如果出现个肿瘤,不管是良性的还是恶性的,都是需要经过病理检验,才能确诊。所以,大家如果发现自己身上可能出现肿瘤,就抓紧去医院检查,不要通过百度、或者贴吧之类的渠道了解肿瘤,来自己吓自己,担心是恶性肿瘤。

d726003023f7f23993796916fb8b543e.png

如果你去做了病理检验,那么随后就会收到医院出具的病理报告单。但是往往没有专业医师给你解读,你自己看那份病理报告单定然感觉是像一本无字天书。

那么今天,小编跟大家就说说这病理报告单该怎么看。

在医学领域中,不同疾病之间,或某些疑难杂症,或尚有有争议的问题,各医院的病理诊断会有一定出入。但是有一点可以肯定,病理诊断的正确率与病理医生的水平和经验密切相关,因为完全是靠个人的眼睛,根据切片上的组织形态学特征来判断的,还受到诸多设备和技术条件的制约。临床医生认真和详细地填写病理申请单,对病理医生的诊断也很有参考意义。

18cc9e0daecc6ace1d414556972f1c6e.png

病理报告的文字表述分四大类型:

第一类,肯定诊断。即能够明确疾病的部位,肯定疾病的性质,规范的疾病名称。

第二类,不能完全肯定。往往用“符合”、“倾向于”、“不排除”、“疑似为”--------。还可以对临床医生提出有价值的建议。

第三类,不能做出前两类的诊断,仅就镜下所见做形态学描述,没有结论

第四类,无法诊断,因材料不足、切片质量不佳等等多种原因导致根本不能做出诊断,需要重新取材,再次做病理检查。也就是说成功的病理学检查至少应得到前三类的结果。

具体到GLM(肉芽肿性小叶性乳腺炎)的报告单,如果能肯性诊断,则第一句话,就是肉芽肿性小叶性乳腺炎。

第二句是部分呈融合性慢性化脓性肉芽肿性炎,就是说有很多个小叶为中心的病变相互融合,呈片状。

第三句就是合并导管扩张,或合并导管扩张症,注意二者的概念不同,前者即有导管扩张,没有发生管周炎,因此不是常说的“浆乳”。后者才是合并浆乳,这种情况的发现率大约25%左右。

第四句是皮肤破溃,或真皮化脓性肉芽肿性炎,说明肉芽肿累及了皮肤。最后才是腺病,维腺瘤形成,导管上皮增生等其他次要疾病。返回搜狐,查看更多

责任编辑:

STM32F103是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M3内核的微控制器,广泛应用于工业控制、物联网设备等领域。本资料包主要提供了STM32F103在实现RS485通信及Modbus RTU协议的主机和从机模式下的源代码实例,帮助开发者快速理解和应用这一通讯技术。 RS485是一种物理层通信标准,用于构建多点数据通信网络,具有传输距离远、抗干扰能力强的特点。它采用差分信号传输方式,可以实现双向通信,适合于长距离的工业环境。在RS485网络中,通常有一个主机(Master)和一个或多个从机(Slave),主机负责发起通信,从机响应主机的请求。 Modbus RTU(Remote Terminal Unit)是一种常用的过程控制工业通信协议,基于ASCII或RTU(远程终端单元)报文格式,常用于PLC(可编程逻辑控制器)和嵌入式系统之间的通信。Modbus RTU使用串行通信接口,如RS485,以减少布线成本和提高通信效率。 在STM32F103上实现RS485 Modbus RTU通信,首先需要配置GPIO口作为RS485的硬件接口,包括数据线(一般为RX和TX)和方向控制线(DE和RE)。DE线用于控制发送数据时的数据线方向,RE线则用于接收数据时的方向。这些设置可以通过STM32的HAL库或LL库进行编程。 接着,你需要编写Modbus RTU协议栈的实现,这包括解析和构造Modbus报文、错误检测与处理、超时管理等。Modbus RTU报文由功能码、地址、数据和CRC校验码组成。主机向从机发送请求报文,从机会根据接收到的功能码执行相应的操作,并返回响应报文。 在主机端,你需要实现发送请求和接收响应的函数,以及解析从机返回的数据。在从机端,你需要监听串口,解析接收到的请求,执行相应的功能并构造响应报文。
<think>好的,我现在需要回答用户关于多模态数据融合方法及其应用场景的问题。首先,我应该先理解用户的需求。用户已经提供了一些引用资料,需要结合这些资料来组织回答,同时按照系统级指令的要求来格式化内容。 首先,多模态数据融合的定义是什么?根据引用[2],多模态AI涉及跨越视觉、语言和音频等不同模态的数据,目标是通过融合这些数据提升AI系统的综合理解能力。接下来,用户想了解具体的融合方法。根据引用[3],传统方法分为早期、中期、后期融合,但现在更倾向于隐式融合,比如深度神经网络中的交织特征提取和融合。需要详细解释这些方法,并注意引用标记。 然后是应用场景,引用[1]提到了图文生成、情感分析、自动驾驶、医疗影像分析等。需要将这些分类整理,并给出具体例子。同时,需要生成相关问题,可能涉及技术挑战、医疗应用或与传统方法的对比等。 在格式上,要确保数学表达式用$...$,独立公式用$$...$$,但当前内容可能较少涉及数学公式,不过如果有相关例子的话需要处理。例如,在融合方法中提到模型结构时,如果有公式可能需要使用LaTeX。此外,要检查引用是否正确,每个引用标记对应到正确的来源。 现在组织内容结构:定义、传统融合方法、深度学习方法、应用场景,最后生成相关问题。需要注意使用中文,段落清晰,引用自然放在句末。例如在提到早期融合时,引用[3]关于传统分类的部分。 可能需要注意用户提供的引用中有部分内容需要正确对应,比如引用[3]提到传统融合方法及隐式转变,而引用[1]则关于应用场景。确保每个引用标记正确对应到用户提供的三个引用资料,避免混淆。 最后生成相关问题,应该基于已回答的内容,提出更深层次的问题,如技术挑战、具体应用案例、方法比较等。需要确保问题相关且有探讨价值。</think>### 多模态数据融合方法介绍及其应用场景 #### 一、多模态数据融合概念 多模态数据融合指整合来自不同模态(如文本、图像、音频、视频、传感器数据等)的信息,通过互补和协同提升模型的综合理解与决策能力。其核心目标是利用模态间的关联性克服单一模态的局限性,例如通过图像补充文本描述的细节,或通过语音增强视频情感分析的准确性[^2]。 --- #### 二、多模态数据融合方法 1. **传统融合方法** - **早期融合(特征级融合)** 将不同模态的原始数据或低级特征直接拼接,例如将图像像素与文本词向量合并后输入模型。适用于模态间强相关的场景,但对数据对齐要求高[^3]。 - **中期融合(模型级融合)** 在各模态独立提取特征后,通过中间层交互(如注意力机制)进行融合。例如,视觉特征$V$与文本特征$T$通过交叉注意力计算权重: $$ \alpha = \text{softmax}(VW_q \cdot (TW_k)^T) $$ 再融合为联合表征$H = \alpha \cdot TW_v$[^3]。 - **后期融合(决策级融合)** 各模态单独训练模型,最终结果通过投票或加权平均整合。常用于模态独立性较强的任务,如多传感器环境监测。 2. **深度学习驱动的隐式融合** 现代方法通过端到端网络实现融合与决策的深度交织,例如: - **跨模态Transformer**:利用自注意力机制动态捕捉模态间关系。 - **多任务学习框架**:共享部分网络层提取通用特征,同时保留模态特异性分支。 --- #### 三、应用场景 1. **图文生成与理解** - **图像描述生成**:融合视觉特征与语言模型生成自然语言描述[^1]。 - **视觉问答(VQA)**:结合图像内容与文本问题推理答案,例如回答“图中人物的情绪如何?”[^1]。 2. **语音与视觉结合的情感分析** 通过音频的语调特征与视频的面部表情联合判断用户情感状态[^1]。 3. **自动驾驶** 融合激光雷达点云$L$、摄像头图像$I$与GPS数据$G$,构建环境感知模型: $$ S = f_{\text{fusion}}(L, I, G) $$ 用于实时路径规划与障碍物检测。 4. **医疗影像分析** 联合CT影像、病理报告和基因数据,提升疾病诊断准确率。例如,乳腺癌预后预测中结合组织切片图像与患者病史文本[^1]。 5. **多模态推荐系统** 整合用户行为日志(文本)、产品图片与视频广告,生成个性化推荐。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值