摘要:卷积神经网络(CNN)长期以来是计算机视觉的核心技术,从上世纪末的LeNet到2012年AlexNet引领的深度学习热潮,再到ResNet等架构取得突破,使图像识别性能大幅提升。近年来,Transformer在视觉领域崛起:Vision Transformer (ViT) 将图像划分为补丁并作为序列处理,首次将Transformer成功应用于视觉任务,随后出现了Swin Transformer等改进模型,引入局部窗口自注意力以提升效率和精度。本报告将对CNN与视觉Transformer的发展历程进行回顾,对比当前两类模型在计算效率、可解释性、参数规模、数据需求及适用场景等方面的差异,分析它们各自在图像分类、目标检测、语义分割、医疗影像分析等任务中的优劣势,并探讨在自动驾驶、安防监控、医疗影像和生成式AI等实际场景中的应用案例,最后展望未来几年二者的发展趋势,包括新的融合架构、多模态学习、低算力部署和自监督学习等方向。
1. 技术发展历史
CNN的发展历程
卷积神经网络(CNN)的概念可以追溯到1980年代,Fukushima提出的神经认知机和LeCun等人在1989年-1998年提出的LeNet系列是早期代表,它们成功用于手写数字识别等任务,在MNIST数据集上取得了优异表现。此后,CNN在1990年代逐步发展并应用于计算机视觉的各个方面,但真正引发深度学习浪潮的是2012年Krizhevsky等人提出的AlexNet模型。AlexNet通过更深的卷积层和大规模数据训练,在ImageNet图像分类挑战赛上以显著优势夺冠,证明了深层CNN在大规模视觉任务上的潜力。这一突破标志着深度学习在视觉领域的崛起。
紧随AlexNet,学术界提出了更深和更高性能的CNN架构。例如2014年的VGG网络加深到19层卷积、2015年的GoogLeNet Inception网络引入了模块化的多尺度卷积结构,以及同年的ResNet(残差网络)通过残差连接成功训练了高达152层的超深网络。ResNet极大缓解了梯度消失问题,实现了比以往更深模型的训练,并在ImageNet上取得了新的最佳成绩。随后出现的ResNeXt、DenseNet、SENet等模型在ResNet基础上进一步改进特征复用和注意力机制,提升了性能。同时,为了在有限计算资源的设备上部署,研究者开发了轻量级CNN如SqueezeNet、MobileNet系列、ShuffleNet等,在保持准确率的同时大幅减少参数和计算量。
CNN在计算机视觉各任务中占据主导地位超过十年,被广泛应用于图像分类、目标检测、语义分割等任务并取得卓越成绩。例如,RCNN系列和YOLO系列模型将CNN应用于目标检测,实现了从候选区域生成到端到端检测的飞跃;FCN和U-Net将卷积网络扩展用于像素级的语义分割,在自然图像和医学图像中均表现出色。总的来说,CNN依靠局部感知野、权值共享和分层结构,在视觉感知任务中取得了巨大成功,奠定了现代计算机视觉的基础。
Transformer在视觉领域的兴起
Transformer最初由Vaswani等人在2017年提出,用于自然语言处理中的机器翻译任务。它基于自注意力机制,可以灵活建模序列中各元素之间的长程依赖关系。由于Transformer在NLP领域表现出色,人们开始探索将其引入视觉领域。Vision Transformer (ViT) 是Transformer在计算机视觉领域的首次重要尝试,它由Dosovitskiy等人在2020年提出。ViT将一张图像划分为固定大小的图像块(如16×16像素),将这些补丁展平后加上位置编码,作为类似单词序列的输入序列来喂给Transformer编码器,并通过一个特殊的分类标记来汇聚图像信息。这一纯Transformer架构在大规模数据集(如ImageNet-21k或更大的JFT-300M)预训练下,达到了可与CNN媲美甚至更优的图像分类性能。ViT的成功证明了不依赖卷积,Transformer同样可以高效提取视觉特征,但也暴露出其对海量数据的依赖和对局部细节捕捉的不足。
在ViT之后,大量改进的视觉Transformer模型相继出现。其中DeiT引入了蒸馏和强化数据增广,使Transformer在较“正常”规模的数据集(ImageNet-1k)上也能有效训练;Swin Transformer(Liu等人,2021)提出了层次化的架构,将自注意力限制在局部滑动窗口内计算,并通过移动窗口机制实现跨区域的信息交流,从而结合了CNN的局部感受野优势,显著提升了模型的计算效率和在检测、分割等任务上的精度。Swin Transformer作为通用主干网络,在图像分类、目标检测(COCO数据集)和语义分割(ADE20K数据集)等多个基准上均取得了当时的SOTA(当前最优)性能。后续的Swin Transformer V2进一步优化了架构和训练稳定性,在更大规模数据和更高分辨率下继续提升性能。
除了ViT和Swin之外,视觉Transformer领域还涌现了许多变种和混合模型。例如,DETR模型将CNN特征与Transformer解码器结合,实现了无需候选框的目标检测,是Transformer在检测领域的重要里程碑;Segformer、SETR等将Transformer引入语义分割解码器以捕获全局信息;ConvNeXt等卷积架构借鉴了Transformer中的一些设计改进(如更深的网络、LayerNorm替代BatchNorm、大卷积核等),证明纯CNN通过现代设计也能媲美Transformer性能。总的来看,自2020年以来,Transformer迅速在视觉领域站稳脚跟,与CNN形成两种并行的发展范式。Transformer架构在视觉任务中的不断创新,使得许多视觉任务的性能纪录被刷新。
2. 当前技术对比
在当前计算机视觉领域,CNN和视觉Transformer各有优劣,在架构原理和实际表现上存在一些显著差异。以下从计算效率、模型可解释性、参数量与数据需求以及适用场景等方面,对两类模型进行比较分析:
-
计算效率:CNN依赖局部卷积运算,其计算复杂度通常与像素/特征图数量线性相关,卷积核可以高效地在GPU/专用芯片上并行计算。因此,经典CNN在单张图像特征提取上的速度较快,对常规分辨率图像具有较优的实时性。Transformer则使用全局自注意力机制,原始ViT的自注意力在空间上是 O ( n 2 ) O(n^2) O(n2)(随像素/补丁数平方增长)的复杂度,对高分辨率图像计算开销较大。这使得早期纯Transformer模型在处理高分辨率或大尺寸输入时较慢,需要借助分块或降采样来降低计算量。然而,新一代视觉Transformer通过限制注意力范围(如Swin将注意力限定在局部窗口)和分层特征提取来降低计算复杂度,缩小了与CNN在效率上的差距。实际上,在某些任务上优化良好的Transformer已经能够在嵌入式系统上取得比CNN更高的准确率,同时保持可接受的速度。总体而言,小尺寸图像或低算力场景下CNN效率更高,而大模型在高算力场景下Transformer可以通过并行计算等手段达到与CNN相近的推理效率。
-
模型可解释性:CNN和Transformer的可解释性都属于深度学习“黑盒”的研究难点,但二者各有一些直观解释途径。CNN的卷积核具有局部感受野,因此底层卷积滤波器往往学到诸如边缘、纹理等局部模式,高层卷积层的特征可以通过可视化激活图(如Grad-CAM)看到对图像某些区域的关注。这种层次化的特征使CNN在一定程度上更容易解释局部哪些图像块影响了输出。Transformer则依赖注意力权重来建模特征之间关系,其多头自注意力可以动态地关注图像中的不同区域。理论上,我们可以通过可视化注意力矩阵来了解模型关注了图像的哪些部分。例如,一些研究发现自监督训练的ViT的注意力图能够自动聚焦在物体主体上。但是,需要注意注意力不等于解释——高注意力权重并不一定意味着因果的重要性。另外,Transformer内部的信息交互非常复杂,一个token的表示受到所有其他token的影响,多层叠加后要直接解释哪一部分图像导致了最终决策并不容易。因此,相对而言CNN的局部特征具有更直观的物理含义(如边缘、纹理),而Transformer的全球关联特性使其决策依据更难以直接解释。在可解释性方面,两类模型都有待进一步提升,如引入可解释的注意力可视化或借助可解释AI技术来分析决策依据。
-
参数规模与数据需求:在模型规模上,Transformer通常需要更大的参数数量和数据集来发挥其潜力。CNN由于卷积的强归纳偏置(inductive bias),即先验地假设了局部平移不变性等特性,在相对中小规模的数据上就能有效训练并取得不错的泛化性能。相反,ViT等Transformer缺少这种先验约束,被认为归纳偏置较弱,因此在小数据集上容易过拟合,不如CNN表现好。Dosovitskiy等人的研究指出,ViT只有在预训练数据量足够大时才能超越同等规模的CNN,否则在数据不足时性能会明显落后。为此,像DeiT这类模型通过蒸馏和增强训练技巧,实现了在只有ImageNet-1k(约120万张图像)的情况下训练ViT取得和CNN相当的结果,但训练难度和超参数调校相对更复杂。在参数量方面,CNN经典模型(如ResNet-50约2500万参数)相对紧凑,而ViT-B/16等Transformer模型参数往往数千万以上,甚至朝着上亿、十亿级别扩展以获取更高性能。这也带来内存开销和计算量的增加。尽管更大的模型往往带来更高上限性能(遵循模型规模越大效果越好的Scaling规律),但训练如此大的Transformer需要海量数据和计算资源支持。因此目前Transformer更适合有充足数据和算力的场景,而CNN在数据有限的情况下更容易训练并得到较好结果。
-
适用场景与特长:CNN和Transformer由于结构差异,在不同场景下表现各有千秋。CNN擅长提取局部特征,对细粒度纹理和小目标的识别往往表现较好,且有大量针对特定任务优化的变种(如针对实时性的YOLO系列检测器)。因此在实时要求高或嵌入式设备上(如移动端、监控摄像头)以及小型数据集任务中,CNN仍然是主流选择。而Transformer擅长建模全局依赖关系,在需要综合整个图像信息进行判断的任务中(例如图像中需要跨区域关联推理的情况)表现突出。Transformer还天然适合与非视觉模态结合(如语言),在多模态任务中有独特优势,这使其在需要跨领域信息融合的场景(如图文检索、视觉问答)中日益受欢迎。此外,Transformer提供了一个统一的序列建模框架,便于利用统一的架构处理不同类型的数据,这对多模态学习和自监督预训练非常有利,也是近年来视觉领域涌现大量基础模型(Foundation Model)的关键。一些大型Transformer模型(如CLIP、Segment Anything等)通过在海量数据上预训练,能够作为通用视觉特征提取器在下游多种任务中迁移应用,这种一模多用的特性是CNN较难实现的。在模型部署方面,目前CNN在工业界部署经验丰富、工具链完善,而Transformer模型部署虽然在逐步优化(例如NVIDIA发布高效Transformer加速库等),但在移动端和低功耗设备上的应用还不如CNN普及。总体来说,CNN在现有成熟应用中仍占主导,而Transformer在新兴的要求全局理解或多模态融合的应用中展现优势,二者在各自适用的场景中发挥作用。
3. 优劣势分析(不同任务表现)
不同视觉任务对模型的能力侧重各异,CNN和Transformer在各任务中的表现也有所区别。下面针对图像分类、目标检测、语义分割和医疗影像分析等任务,分别分析两类模型的优势与不足。
3.1 图像分类
图像分类是计算机视觉的基础任务之一,也是CNN和Transformer竞争最为直接的领域。CNN的优势在于其多年发展的成熟架构和在中小型数据集上的出色表现。诸如ResNet系列在ImageNet上训练良好,并且通过迁移学习在各类分类任务上都取得了高精度,是许多实际应用的首选 backbone。CNN对局部特征和纹理模式的敏感使其在辨别细微差别时表现稳健。然而,Transformer的优势在大数据下开始显现。Vision Transformer等在亿级图像预训练后,其分类准确率可以超过同等规模的CNN模型。Transformer能更好地利用全局信息来判别图像语义,当图像类别需要基于全局组合特征来识别时(例如复杂场景分类),Transformer可能更胜一筹。此外,大型Transformer模型(ViT-L/16等)在ImageNet上已经将Top-1准确率提升到新的高度,并保持良好的泛化。Transformer的不足是对数据依赖严重:在数据不足或计算资源有限时,纯Transformer往往不如CNN训练得快、效果好,需要借助预训练或数据增广技巧。总体而言,在图像分类任务中,小型数据集和低算力场景CNN更具优势,而海量数据和高算力加持下Transformer可以取得更高的上限性能。实际应用中,两者常结合使用:例如用CNN特征初始化Transformer,或用大型Transformer预训练模型然后微调较小的CNN,以兼顾性能和效率。
3.2 目标检测
目标检测需要在图片中定位并识别目标,是比分类更复杂的任务。传统方法依赖CNN作为骨干和区域提议网络,典型代表如Faster R-CNN(CNN提取特征+RPN候选框+后续分类回归)以及YOLO系列(端到端单阶段检测器),这些CNN-based方法经过多代优化,在精度和速度上达到良好平衡,已广泛用于工业界实时检测应用。CNN在检测中的优势在于:成熟的多尺度特征金字塔(FPN)可以很好地检测不同大小的目标,卷积提取的局部特征对目标定位精细度高。此外,CNN模型可以较容易地在检测任务中进行微调,迁移能力强。Transformer在目标检测中的探索由Facebook AI的DETR模型引领。DETR使用CNN提取图像特征后,将其序列化送入Transformer编码器-解码器结构,通过自注意力机制直接对整个图像建模,并输出一组目标边界框和类别集合,实现了不需要额外区域提议和后处理的全新检测范式。Transformer在检测中的潜在优势是全局建模:它可以更好地处理目标之间的关系和上下文。例如在拥挤场景下,Transformer可以通过注意力抑制重叠目标的冗余检测。但Transformer检测也遇到挑战:如DETR初版训练收敛慢(需要500+ epochs训练才能达到与Faster R-CNN相当的性能),小目标检测精度偏低等。后续改进如Deformable DETR引入稀疏注意力,显著加快了收敛并提升小目标检测效果。Swin Transformer等作为主干应用于检测时,与FPN结合,可以取得领先的检测精度。例如,将Swin作为Faster R-CNN的backbone,在COCO数据集上实现了高于ResNeXt等CNN主干的平均精度。Transformer的劣势在检测中一方面是计算量较大,另一方面是缺少CNN那样针对检测任务的先验(如平移不变性对定位的帮助)。因此目前最优的检测模型往往是融合了Transformer和CNN优点的混合架构:利用Transformer模块增强全局关系建模,同时保留CNN多尺度特征和局部精细定位能力。例如,Swin Transformer + FPN 的检测器、或者加入注意力机制的改进YOLO等,都属于这类融合方案。在实时性要求极高的应用中(如嵌入式实时检测),纯CNN仍占优势;而在精度要求高的重要场景(如自动驾驶感知),Transformer增强的检测模型正发挥越来越大的作用。
3.3 语义分割
语义分割需要对图像中每个像素进行分类,是精细程度很高的密集预测任务。CNN在分割领域已有成熟的架构,如U-Net在医学影像分割中大获成功,Fully Convolutional Network (FCN)开启了用卷积网络直接输出像素级预测的先河,之后的DeepLab系列通过空洞卷积和条件随机场后处理在自然图像分割中取得卓越效果。这些CNN方法擅长捕获局部细节:卷积的平移不变性和多层级特征使得模型可以在保持定位准确的同时逐步扩大全局视野。Transformer在语义分割中的应用提高了模型对全局语义的一致性。比如SETR将ViT作为编码器提取全局特征,再通过卷积解码器还原像素级预测;MaskFormer/Mask2Former等方法利用Transformer将分割视为检测掩膜的过程,也取得了很好的效果。Transformer的优势在于能够关联远距离像素:对于一个物体散落在图像各处的情形,注意力机制可以将相隔较远但属于同一物体的区域联系起来,从而输出更一致的分割掩膜。例如在分割一只斑点状的动物时,Transformer可以更容易将不同位置的斑点归属于同一类别。最近,Meta AI提出的Segment Anything Model (SAM) 更是将ViT作为强大的图像特征提取器,结合灵活的提示(prompt)机制,实现了几乎任意物体的分割。SAM作为视觉基础模型,能在没有针对特定类别训练的情况下,对任意输入提示(点、框、文本等)返回对应区域的掩膜,展示了Transformer在分割任务上的强大全局感知和泛化能力。Transformer在分割中的劣势主要在于高分辨率下的计算开销和对细节的捕捉不足。由于语义分割要求像素级的定位,纯Transformer生成的特征分辨率较低时,往往需要卷积上采样或其他精细化模块来提高边界定位准确度。相比之下,CNN通过跳跃连接融合低层高分辨率细节,可以更精准地还原边界。因此,混合模型在分割中也很常见:例如U^2-Net、SegFormer等结合了Transformer全局编码与卷积解码,以同时兼顾全局语义与局部细节。在实际应用中,如果分割任务涉及固定类别且有大量标注数据(如城市街景分割),CNN或含注意力模块的CNN仍是主流;但在要求通用性更强或需要利用全局信息的场景下,Transformer提供了新的解决方案。值得一提的是,SAM的出现预示着基础模型用于分割的趋势,未来可能一个大型Transformer模型加简单微调,就能胜任多种分割任务。
3.4 医疗影像分析
医疗影像分析涵盖医学图像的分类、检测病灶以及分割解剖结构等任务,对模型的准确性和泛化能力要求极高,同时常面临数据相对较少、标注成本高的问题。CNN在医疗影像领域应用历史悠久,从肺部结节检测到脑肿瘤分割都有大量成功案例。CNN的优势在于其在小数据集上的良好泛化,通过迁移学习利用ImageNet预训练权重,CNN在医学数据上往往可以取得不错表现。此外,CNN提取的特征具有局部性,对于识别医学影像中的细粒度模式(如病灶的边缘、组织的纹理)非常有效。许多经典医学影像模型(例如ResNet+FPN用于胸部X光异常检测,U-Net用于MRI肿瘤分割)至今仍是临床研究的基准方法。Transformer在医疗影像中的探索刚起步但发展迅速。ViT被引入医学图像分类和分割任务中,有研究将ViT用于病理图像中肿瘤区域检测,发现在充分预训练后ViT与CNN性能相当,某些类别上略有优势,但训练难度更大。这一结果佐证了Transformer需要大量数据或预训练才能发挥作用,在医疗影像这种数据有限领域,直接训练Transformer有困难。不过,Transformer在医疗影像中也展示了一些潜力。由于医疗图像(如全幻灯片病理图像)的分辨率极高,通常需要将图像分块处理再整合结果。Transformer擅长融合多块图像的信息,可用于全局汇总分析,比如将多个病理切片块的特征通过自注意力聚合以判断整体病例诊断。另一个方向是医疗基础模型的出现,如前文提到的SAM模型已经被改造成MedSAM用于医疗分割,成为首个面向通用医疗影像分割的基础模型。初步结果显示,MedSAM在不同器官和成像模态的分割任务上超过了许多专门训练的模型。这表明Transformer大型模型有望在医疗领域通过一次训练适用多任务,减轻每个任务单独训练的负担。当前来看,医疗影像分析中CNN更为实用和常见,因为数据规模和计算资源限制下CNN更容易训练且性能可靠;但Transformer结合自监督预训练(如利用海量未标注医学影像预训练)将可能逐步缩小差距。展望未来,在医疗这样的高风险领域,或许会出现CNN和Transformer结合的方案,例如用CNN提取细节特征、Transformer整合全局语义,以期提高诊断的准确率和可信度。
4. 应用场景与案例
CNN和Transformer在工业界和学术界都有广泛应用,下面列举几个典型领域中的应用场景,说明两类模型各自的作用和发展:
-
自动驾驶:自动驾驶感知系统需要实时准确地识别车辆、行人、交通标志等。传统上,自动驾驶主要依赖CNN(如ResNet或MobileNet系列作为骨干)来执行目标检测(用于识别车辆行人)和场景分割(分割道路、车道线等)。例如,许多商用自动驾驶车辆的视觉模块使用经过优化的CNN模型来满足毫秒级延迟的要求。然而,近年Transformer也开始融入自动驾驶感知。一方面,像Waymo、Tesla等公司的研究团队尝试将Transformer用于多摄像头的视角变换和全景理解,以更好地综合来自不同摄像头的全局信息;另一方面,NVIDIA等公司报告Transformer在一些自动驾驶视觉任务(如深度估计、车道分割)中精度超越了CNN。Transformer通过attention机制融合来自激光雷达点云和摄像头图像的多模态数据,也展现出优于传统融合方法的潜力。实际案例方面,NVIDIA在其最新的Drive平台上设计了高效的视觉Transformer网络,用于提升嵌入式系统上感知算法的性能。可以预见,在自动驾驶领域,CNN与Transformer将协同工作:前端利用CNN快速提取特征,后端通过Transformer整合全局环境信息,从而提升感知的准确性和鲁棒性。
-
安防监控:安防领域涉及人脸识别、行人再识别、异常行为检测、目标跟踪等一系列视觉任务。以人脸识别为例,传统方案采用CNN(如FaceNet、SphereFace等模型)提取人脸特征向量进行比对,已经在安防考勤和身份验证系统中大规模部署。CNN的人脸特征在庞大的人脸数据集上训练后,对光照、姿态具有较好的鲁棒性。而Transformer模型开始在一些监控场景中崭露头角:Vision Transformer提高了人脸识别和异常行为检测的准确率。Transformer可以利用自注意力更有效地区分相似人脸,或在拥挤场景中通过全局建模来检测异常行为(如群体运动模式的异常)。有研究将Transformer应用于跨摄像头的行人再识别,通过建模不同视角下行人特征的关系,提升了再识别准确率。一些前沿监控系统也探索使用Transformer进行多目标跟踪,以便在目标出现遮挡、视野切换时保持对同一目标的识别。在视频分析任务中,Transformer可以同时建模空间和时间维度的信息,捕获行为发生的长期依赖,这对异常事件检测非常有利。尽管Transformer目前在安防领域的部署还不如CNN普遍,但随着算力提升和模型优化,我们预计未来注意力机制将加强智能监控系统的能力,实现更精准的识别与预测。
-
医疗影像:在临床诊断和医学研究中,计算机视觉技术被用于分析X光、CT、MRI、超声等多种影像。CNN是这一领域的主力军,许多经过验证的医疗AI产品都基于CNN模型。例如,肺部结节检测AI利用CNN在胸部CT上自动标记可疑结节,辅助手术决策;皮肤癌检测应用通过CNN分类皮肤病变照片,实现接近皮肤科医生水准的筛查。Transformer的加入为医疗影像带来新的契机。前面提到的MedSAM是一个引人注目的案例:它将通用分割模型SAM(ViT为骨干)适配到医学领域,成为首个通用医疗影像分割的基础模型。实验表明,MedSAM在不同器官和病灶的分割任务上表现全面优于之前各自独立训练的最佳模型。这意味着在未来,放射科医生可能拥有一个“一劳永逸”的视觉AI助手:只需提供影像,模型即可标注出各种解剖结构或异常区域,而不需要为每种疾病单独训练一个网络。除了分割,Transformer在医学影像报告生成、影像与电子病历多模态分析方面也开始应用。例如将病人影像通过Transformer与文本病历信息结合,可以帮助自动生成诊断报告。虽然这些应用多处于研究阶段,但展望来看,Transformer有望提升医疗影像AI的通用性和智能程度,让AI更好地辅助医生做出诊断。不过在医疗场景,模型的可靠性和可解释性尤为重要,因此目前Transformer更多是作为提升性能的研究手段,真正临床落地仍以验证充分的CNN方案为主。未来随着对Transformer模型的理解加深和法规认证,Transformer在医疗领域的应用比例会逐步增加。
-
生成式AI与内容创作:生成式AI指利用模型自动生成图像、视频等内容。早期的图像生成主要由GAN(生成对抗网络)驱动,例如著名的StyleGAN利用深层CNN生成了极高保真的人脸图像。CNN在图像生成、图像编辑(如风格迁移)等任务中发挥了巨大作用。然而近期的扩散模型(Diffusion Models)和跨模态生成引入了Transformer的力量。以OpenAI的DALL·E 2和Stability AI的Stable Diffusion为代表的新一代图像生成模型,结合了Transformer和扩散过程的优点,能够根据文本描述生成栩栩如生的图像。具体而言,DALL·E 2使用了CLIP(包含图像Transformer和文本Transformer)来理解文本和图像语义,再通过扩散模型逐步绘制出与文本匹配的图像;Stable Diffusion则采用了UNet卷积网络作为生成器,但其中融入了自注意力模块和Transformer编码器来处理文本条件,从而实现了高质量的文本到图像生成。Transformer的引入使得生成式模型可以更好地跨模态理解:文本Transformer捕捉了语言的细微语义,而图像Transformer或注意力机制将这些语义融入视觉特征生成过程中,保证了生成图像与输入文本在语义上的高度一致。这一点是传统纯CNN生成网络所不及的。此外,Transformer还被用于纯视觉的生成任务中,如Vision Transformer序列化图像像素用于图像自回归生成(Image GPT)等。不过在图像生成底层结构上,CNN仍然占据一席之地,因为转置卷积和上采样操作对生成高分辨率图像非常有效,计算开销也低于全局注意力。因此许多最强的生成模型实际上是CNN+Transformer混合架构。在内容创作领域(广告设计、游戏美术、电影特效等),这些生成式AI工具已经开始实用化。例如设计师使用基于扩散模型的工具快速生成概念图,影视后期利用SAM这类模型自动抠像。可以预见,CNN提供细节,Transformer提供创意理解的结合,将继续推动生成式AI的发展。对业界而言,Transformer扩展了AI生成内容的边界,能够根据更抽象的指令或多模态输入来创作,极大提高了内容生产的效率和想象空间。
5. 未来发展趋势
展望未来几年,CNN与Transformer在视觉领域的研究与应用将呈现以下趋势:
-
融合与新型架构:预计会出现更多将CNN和Transformer优点融合的混合模型。这类模型在架构上取长补短,例如用卷积实现底层的局部高效特征提取,用Transformer捕获高层次的全局依赖。近期的ConvNeXt、Conformer、CoAtNet、Next-ViT等都是这方面的探索,它们证明了通过巧妙设计,可以让模型同时具备卷积的高效和Transformer的强表达能力。这种融合趋势还体现在模型块层面的创新,如在Transformer中引入深度卷积增强局部性,在CNN中嵌入小型自注意力模块提升全局建模能力等。随着对两类架构优缺点认识的加深,CNN还是Transformer”将不再是二选一,而是会涌现出更多介于二者之间的中间形态甚至全新架构,以应对不同的视觉任务需求。
-
多模态学习与通用智能:Transformer在统一建模不同模态数据方面的优势将引领多模态融合的发展。未来的视觉模型很可能不再单纯面向图像,而是能处理图像与文本、语音、传感器信号等多源数据的联合输入。比如,视觉Transformer可以与语言Transformer无缝结合,产生既懂图像又懂语言的模型,用于图文生成、视觉问答、跨模态检索等。目前的CLIP、ALIGN等模型已初步展示了视觉-语言对齐的强大能力。展望未来,我们或许会看到一个统一的模型,同时接受视觉、语言、音频等输入,在多模态交互场景(如机器人、AR/VR)中发挥类人水平的感知和认知能力。要实现这一点,需要在模型设计上继续突破,让单一架构高效处理多种模态的信息。这可能意味着Transformer架构会成为基础,因为其序列建模的通用性特别适合融合不同类型的数据。同时,大规模的多模态预训练将产生新的基础模型(Foundation Models),使得模型具备跨领域的理解和生成能力。
-
高效模型与低算力部署:尽管Transformer性能强大,但其高昂的计算和内存开销是推广应用的瓶颈之一。未来研究将致力于降低模型复杂度、提高推理效率,使得先进的视觉模型能够在边缘设备、移动设备上运行。对此,一方面会有更多高效Transformer变体出现,例如采用稀疏注意力、低秩近似、自注意力拆分等技术来将计算复杂度从二次降为线性;另一方面,模型压缩、蒸馏、剪枝、量化等手段也会应用到CNN和Transformer上以减小模型规模。CNN这边已有MobileNet、EfficientNet等压缩模型,Transformer侧近来也有专为移动端设计的轻量ViT(如MobileViT、EdgeFormer等)。未来的模型可能同时结合卷积和注意力,并针对特定硬件加以优化设计,以充分利用内存带宽和并行计算能力。一个可以预见的发展是,专用加速芯片将针对Transformer进行优化(类似CNN加速器过去的兴起),从硬件层面降低部署成本。在算法和硬件共同努力下,高精度的视觉模型将逐步走入资源受限的设备,拓宽智能视觉应用的范围。
-
自监督学习与训练范式革新:由于大模型对于标注数据的需求量巨大,自监督学习和弱监督学习将在未来扮演更加重要的角色。CNN和Transformer都已经在自监督领域取得进展:如CNN上的对比学习(SimCLR、MoCo)方法,Transformer上的遮蔽图像建模(MAE、SimMIM)方法等。这些方法能够在无需人工标签的情况下,让模型学到有用的特征表示。Transformer尤其适合自监督的预训练范式,例如ViT通过Mask掉部分图像补丁、让模型预测缺失内容,从而学习到全局图像结构。这种预训练使模型获得通用的视觉理解,然后再 fine-tune 到下游任务,可以显著提升数据高效性。未来几年,我们预计更大的自监督预训练模型会出现,在数亿计未标注图像上训练,产生性能远超有监督模型的结果。同时,迁移学习和增量学习将更加普遍,一个预训练的视觉Transformer或混合模型可以反复用于各类新任务,减少从零开始训练的成本。这种趋势下,研究者将关注如何让CNN和Transformer更好地进行自监督训练、如何设计新的预训练任务来提升模型对复杂视觉概念的理解。总之,先通用预训练、后具体微调的范式会更加巩固,推动视觉AI朝着更通用智能的方向迈进。
-
模型可解释性与可靠性:最后值得一提的趋势是,无论CNN还是Transformer,随着它们在关键领域的应用扩大,模型解释和可靠性将成为研究重点之一。尤其是Transformer引入后,模型复杂度更高、决策过程更难以理解,这在自动驾驶、医疗等高风险应用中是一个隐患。未来可能会有新的方法帮助解释Transformer的决策,如分析注意力流动、构建可视化工具展示图像哪个区域通过何种注意力头影响了结果等。此外,融合模型的复杂性更高,也需要探讨如何验证和保证其行为的稳定可控。一些工作可能致力于证明混合模型的鲁棒性(例如对遮挡、光照的适应性),并提高其抗扰动和不确定性量化的能力。可以预见,在法规监管和安全要求的推动下,能解释、可信赖的视觉模型将更受青睐,这将促使学术界为CNN和Transformer注入更多提高透明度的改进,在性能之外追求让模型的决策过程为人所理解和信任。
综上所述,CNN与Transformer在计算机视觉领域各有辉煌的过去,也将共享充满希望的未来。CNN作为成熟高效的工具将在工程应用中继续发挥余热,而Transformer作为创新强大的架构正驱动着视觉技术的新一轮突破。二者的融合与共同进化将推动我们迈向更智能、更全面的视觉感知时代。从专用模型到通用大模型,从单一视觉到多模态理解,未来的计算机视觉有望在CNN和Transformer的双轮驱动下取得前所未有的成就。