loop函数逻辑python_如何在Python中计算逻辑sigmoid函数?

如何在Python中计算逻辑sigmoid函数?

这是一个逻辑sigmoid函数:

SUuRi.png

我知道x。 我现在如何在Python中计算F(x)?

比方说x = 0.458。

F(x)=?

Richard Knop asked 2019-07-20T01:57:32Z

10个解决方案

166 votes

它也有scipy:[http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logistic.html]

In [1]: from scipy.stats import logistic

In [2]: logistic.cdf(0.458)

Out[2]: 0.61253961344091512

这只是另一个scipy函数的一个昂贵的包装器(因为它允许你扩展和转换逻辑函数):

In [3]: from scipy.special import expit

In [4]: expit(0.458)

Out[4]: 0.61253961344091512

如果你关注表演继续阅读,否则只需使用logistic.cdf。

一些基准测试:

In [5]: def sigmoid(x):

....: return 1 / (1 + math.exp(-x))

....:

In [6]: %timeit -r 1 sigmoid(0.458)

1000000 loops, best of 1: 371 ns per loop

In [7]: %timeit -r 1 logistic.cdf(0.458)

10000 loops, best of 1: 72.2 µs per loop

In [8]: %timeit -r 1 expit(0.458)

100000 loops, best of 1: 2.98 µs per loop

正如预期的那样,logistic.cdf比expit慢得多.np.exp在使用单个值调用时仍然比python sigmoid函数慢,因为它是用C编写的通用函数([http://docs.scipy.org/doc/numpy] /reference/ufuncs.html])因此有一个调用开销。 当使用单个值调用时,此开销大于expit的计算加速比。 但是当涉及到大型阵列时,它变得可以忽略不计:

In [9]: import numpy as np

In [10]: x = np.random.random(1000000)

In [11]: def sigmoid_array(x):

....: return 1 / (1 + np.exp(-x))

....:

(你会注意到从expit到np.exp的微小变化(第一个不支持数组,但如果你只有一个值可以计算得快得多))

In [12]: %timeit -r 1 -n 100 sigmoid_array(x)

100 loops, best of 1: 34.3 ms per loop

In [13]: %timeit -r 1 -n 100 expit(x)

100 loops, best of 1: 31 ms per loop

但是当你真的需要性能时,通常的做法是在RAM中保存一个预先计算的sigmoid函数表,并以一定的速度交换一些精度和内存(例如:[http://radimrehurek.com/2013/ 09 / word2vec-in-python-part-two-optimized /])

另请注意,自版本0.14.0起,expit的实现在数值上是稳定的:[https://github.com/scipy/scipy/issues/3385]

Théo T answered 2019-07-20T01:59:11Z

157 votes

这应该这样做:

import math

def sigmoid(x):

return 1 / (1 + math.exp(-x))

现在你可以通过调用来测试它:

>>> sigmoid(0.458)

0.61253961344091512

更新:请注意,上述内容主要是将给定表达式直接一对一地转换为Python代码。 它未经过测试或已知是数字上合理的实现。 如果你知道你需要一个非常强大的实现,我相信还有其他一些人实际上已经考虑过这个问题。

unwind answered 2019-07-20T01:57:54Z

34 votes

以下是如何以数字稳定的方式实现逻辑sigmoid(如此处所述):

def sigmoid(x):

"Numerically-stable sigmoid function."

if x >= 0:

z = exp(-x)

return 1 / (1 + z)

else:

z = exp(x)

return z / (1 + z)

或者这可能更准确:

import numpy as np

def sigmoid(x):

return math.exp(-np.logaddexp(0, -x))

在内部,它实现与上面相同的条件,但随后使用log1p。

一般来说,多项logistic sigmoid是:

def nat_to_exp(q):

max_q = max(0.0, np.max(q))

rebased_q = q - max_q

return np.exp(rebased_q - np.logaddexp(-max_q, np.logaddexp.reduce(rebased_q)))

(但是,logaddexp.reduce可能更准确。)

Neil G answered 2019-07-20T02:00:05Z

7 votes

其他方式

>>> def sigmoid(x):

... return 1 /(1+(math.e**-x))

...

>>> sigmoid(0.458)

ghostdog74 answered 2019-07-20T02:00:26Z

4 votes

我觉得很多人可能对自由参数感兴趣来改变sigmoid函数的形状。 对于许多应用程序,您希望使用镜像sigmoid函数。 第三,您可能希望进行简单的规范化,例如输出值介于0和1之间。

尝试:

def normalized_sigmoid_fkt(a, b, x):

'''

Returns array of a horizontal mirrored normalized sigmoid function

output between 0 and 1

Function parameters a = center; b = width

'''

s= 1/(1+np.exp(b*(x-a)))

return 1*(s-min(s))/(max(s)-min(s)) # normalize function to 0-1

并绘制和比较:

def draw_function_on_2x2_grid(x):

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)

plt.subplots_adjust(wspace=.5)

plt.subplots_adjust(hspace=.5)

ax1.plot(x, normalized_sigmoid_fkt( .5, 18, x))

ax1.set_title('1')

ax2.plot(x, normalized_sigmoid_fkt(0.518, 10.549, x))

ax2.set_title('2')

ax3.plot(x, normalized_sigmoid_fkt( .7, 11, x))

ax3.set_title('3')

ax4.plot(x, normalized_sigmoid_fkt( .2, 14, x))

ax4.set_title('4')

plt.suptitle('Different normalized (sigmoid) function',size=10 )

return fig

最后:

x = np.linspace(0,1,100)

Travel_function = draw_function_on_2x2_grid(x)

E8Fwq.png

Philipp Schwarz answered 2019-07-20T02:01:04Z

4 votes

通过转换tanh函数的另一种方法:

sigmoid = lambda x: .5 * (math.tanh(.5 * x) + 1)

dontloo answered 2019-07-20T02:01:30Z

3 votes

使用numpy包允许你的sigmoid函数解析向量。

根据Deeplearning,我使用以下代码:

import numpy as np

def sigmoid(x):

s = 1/(1+np.exp(-x))

return s

Diatche answered 2019-07-20T02:02:04Z

2 votes

来自@unwind的回答很好。 但它无法处理极端负数(抛出OverflowError)。

我的改进:

def sigmoid(x):

try:

res = 1 / (1 + math.exp(-x))

except OverflowError:

res = 0.0

return res

czxttkl answered 2019-07-20T02:02:39Z

1 votes

Tensorflow还包括sigmoid功能:[https://www.tensorflow.org/versions/r1.2/api_docs/python/tf/sigmoid]

import tensorflow as tf

sess = tf.InteractiveSession()

x = 0.458

y = tf.sigmoid(x)

u = y.eval()

print(u)

# 0.6125396

Enrique Pérez Herrero answered 2019-07-20T02:03:07Z

0 votes

逻辑sigmoid函数的数值稳定版本。

def sigmoid(x):

pos_mask = (x >= 0)

neg_mask = (x < 0)

z = np.zeros_like(x,dtype=float)

z[pos_mask] = np.exp(-x[pos_mask])

z[neg_mask] = np.exp(x[neg_mask])

top = np.ones_like(x,dtype=float)

top[neg_mask] = z[neg_mask]

return top / (1 + z)

Yash Khare answered 2019-07-20T02:03:33Z

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值