python 3维正态分布图_用python制作正态分布图

本文展示了如何使用Python制作IQ和赛马时间的正态分布图。通过numpy、pandas和matplotlib库,计算了IQ数据的平均值和标准差,并绘制了对应的正态分布曲线及直方图。同样的过程应用于赛马数据,得出赛马时间的正态分布图。结论指出概率密度函数与直方图的关系,并强调大样本下直方图更接近正态分布。
摘要由CSDN通过智能技术生成

赛马正态分布图

1.制作IQ数据图

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

#使用%matplotlib命令可以将matplotlib的图表直接嵌入到Notebook之中,或者使用指定的界面库显示图表,它有一个参数指定matplotlib图表的显示方式

*#inline表示将图表嵌入到Notebook中。

%matplotlib inline

#为了使画出来的图支持 retina格式

%config InlineBackend.figure_format = 'retina'

iq_data = pd.read_csv('IQscore.csv')

len(iq_data)

70

iq = iq_data['IQ']

mean = iq.mean()

mean

100.82857142857142

std = iq.std()

std

15.015905990389498

#normfun正态分布函数,mu: 均值,sigma:标准差,pdf:概率密度函数,np.exp():概率密度函数公式

def normfun(x,mu, sigma):

pdf = np.exp(-((x - mu)**2) / (2* sigma**2)) / (sigma * np.sqrt(2*np.pi))

return pdf

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值