python算法工程师面试题_算法工程师面试常见问题

八九月份就要开始找工作了,一直期待能够成为一名算法工程师,所以在这里总结一下算法工程师常见问题。期待9月秋招时能有一个好的结果。本篇博客会一直更新下去。

2163ad51db7a

C++、python

剑指offer+Leetcode基本就能解决

1)  过拟合问题

2)  交叉验证问题

3)  模型融合问题

4)  模型选择问题

1)  几种模型( SVM,LR,GBDT,EM )的原理以及公式推导;

2)  RF,GBDT 的区别; GBDT,XgBoost的区别(烂大街的问题最好从底层原理去分析回答);

3)  决策树处理连续值的方法;

4)  特征选择的方法;

5)  过拟合的解决方法;

6)  K-means 的原理,优缺点以及改进;

7)  常见分类模型( SVM ,决策树,贝叶斯等)的优缺点,适用场景以及如何选型;

8)  SVM 为啥要引入拉格朗日的优化方法;

9)  假设面试官什么都不懂,详细解释 CNN 的原理;

10) 梯度下降的优缺点

11) EM与K-means的关系;

12) L1与L2的作用,区别以及如何解决L1求导困难;

13) 如何用尽可能少的样本训练模型同时又保证模型的性能;

14) ID3和C4.5的优缺点,树的融合(RF和GBDT)

15) 特征提取方法,如何判断特征是否重要

16) BP神经网络以及推导

17) HMM模型状态推导

18) 过拟合原因以及解决办法(深度学习同)

19) 常见损失函数

20)机器学习性能评价,准确率,召回率,ROC

22)降采样,PCA,LDA

1)四种激活函数区别和作用

2)过拟合解决方法

3)(CNN)卷及神经网络各层作用

4)(RNN)循环神经网络

5)LSTM

6)梯度弥散

7)优化算法 adam,SGD等

8)分析Alexnet,VGG的网络结构以及各层作用

9)XgBoost(好像很多公司也面到了)

10)梯度下降的优化

12)卷积核参数计算

13)TensorFlow中的session是什么,session和interactivesession的区别

---------------------本文来自 gzj_1101 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/gzj_1101/article/details/79514902?utm_source=copy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值