python做逻辑斯蒂二分类_Python实现逻辑斯蒂回归

Python实现逻辑斯蒂回归

本实验室根据两次考试成绩与是否通过的数据,通过logistic回归,最后获得一个分类器。

逻辑斯蒂回归

导入数据

import numpy as np

def loaddata(file, delimeter):

#以delimeter为分隔符导入file数据

data = np.loadtxt(file, delimiter=delimeter)

print('Dimensions: ',data.shape)

# 打印数据前6行

print(data[1:6,:])

return(data)

data = loaddata('data1.txt', ',')

结果为:

Dimensions: (100, 3)

[[30.28671077 43.89499752 0. ]

[35.84740877 72.90219803 0. ]

[60.18259939 86.3085521 1. ]

[79.03273605 75.34437644 1. ]

[45.08327748 56.31637178 0. ]]

可以看见data的数据结构为一个100*3的矩阵,第一列为exam1的成绩,第二列为exam2的成绩,第三列为是否最终通过(0为否,1为是)。

# 作图显示数据分布

import matplotlib.pyplot as plt

def plotData(data, label_x, label_y, label_pos, label_neg, axes=None):

# 获得正负样本的下标(即哪些是正样本,哪些是负样本)

neg = data[:,2] == 0

pos = data[:,2] == 1

if axes == None:

axes = plt.gca()

axes.scatter(data[pos][:,0], data[pos][:,1], marker='+', c='k', s=60, linewidth=2, label=label_pos)

axes.scatter(data[neg][:,0], data[neg][:,1], c='y', s=60, label=label_neg)

axes.set_xlabel(label_x)

axes.set_ylabel(label_y)

axes.legend(frameon= True, fancybox = True)

plotData(data, 'Exam 1 score', 'Exam 2 score', 'Pass', 'Fail')

读取数据作为X与y向量:

X = np.c_[np.ones((data.shape[0],1)), data[:,0:2]]

y = np.c_[data[:,2]]

则X为:

1 34.6237 78.0247

1 30.2867 43.895

1 35.8474 72.9022

1 60.1826 86.3086

1 79.0327 75.3444

1 45.0833 56.3164

1 61.1067 96.5114

1 75.0247 46.554

1 76.0988 87.4206

1 84.4328 43.5334......

y为:

0

0

0

1

1

0

1

1

1

1......

逻辑斯蒂回归

逻辑斯蒂回归函数设为为:

# 定义sigmoid函数

def sigmoid(z):

return(1 / (1 + np.exp(-z)))

损失函数为:

向量化的损失函数(矩阵形式):

# 定义损失函数

def costFunction(theta, X, y):

m = y.size

# 此处h为一个列向量

h = sigmoid(X.dot(theta))

J = -1.0*(1.0/m)*(np.log(h).T.dot(y)+np.log(1-h).T.dot(1-y))

return J[0]

# 初始化theta为0向量

initial_theta = np.zeros(X.shape[1])

# 此时逻辑斯蒂回归的损失函数值为

cost = costFunction(initial_theta, X, y)

print('Cost:\n', cost)

Cost:

0.6931471805599452

求偏导(梯度)

向量化的偏导(梯度)

# 求梯度

def gradient(theta, X, y):

m = y.size

# 此处h为一100*1的列向量

h = sigmoid(X.dot(theta.reshape(-1,1)))

# grad为一个3*100的矩阵

grad =(1.0/m)*X.T.dot(h-y)

return(grad.flatten())

#此时逻辑斯蒂函数在初始化theta处在Θ0、Θ1、Θ2处的梯度分别为:

grad = gradient(initial_theta, X, y)

print('Grad:\n', grad)

Grad:

[ -0.1 -12.00921659 -11.26284221]

最小化损失函数

# 计算损失函数得最小值。

from scipy.optimize import minimize

# 规定最大迭代次数为400次

res = minimize(costFunction, initial_theta, args=(X,y), jac=gradient, options={'maxiter':400})

res

# minimize()返回的格式是固定的,fun为costFunction函数迭代求得的最小值,hess_inv和jac分别为求得最小值时海森矩阵和雅克比矩阵的值,小写字母x为当costFunction函数最小时函数的解,在costFunction中即为theta的解。即计算损失函数最小时theta的值为[-25.16133284, 0.2062317 , 0.2014716 ]。

Out[17]:

fun: 0.20349770158944375

hess_inv: array([[ 3.31474479e+03, -2.63892205e+01, -2.70237122e+01],

[ -2.63892205e+01, 2.23869433e-01, 2.02682332e-01],

[ -2.70237122e+01, 2.02682332e-01, 2.35335117e-01]])

jac: array([ -9.52476821e-09, -9.31921318e-07, -2.82608930e-07])

message: 'Optimization terminated successfully.'

nfev: 31

nit: 23

njev: 31

status: 0

success: True

x: array([-25.16133284, 0.2062317 , 0.2014716 ])

即损失函数最小时theta的值:

theta = res.x.T

theta

Out[20]: array([-25.16133284, 0.2062317 , 0.2014716 ])

咱们来看看考试1得分45,考试2得分85的同学通过概率有多高

sigmoid(np.array([1,45,85]).dot(theta))

Out[22]: 0.77629072405889421

即考试1得分45,考试2得分85的同学通过概率约为0.7763。

画出决策边界

# 标注考试1得分45,考试2得分85的同学

plt.scatter(45, 85, s=60, c='r', marker='v', label='(45, 85)')

# plotData为之前定义的画分类点的函数

plotData(data, 'Exam 1 score', 'Exam 2 score', 'Admitted', 'Not admitted')

# 生成网格数据

x1_min, x1_max = X[:,1].min(), X[:,1].max(),

x2_min, x2_max = X[:,2].min(), X[:,2].max(),

xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max))

# 计算h的值

h = sigmoid(np.c_[np.ones((xx1.ravel().shape[0],1)), xx1.ravel(), xx2.ravel()].dot(res.x))

h = h.reshape(xx1.shape)

# 作等高线,可理解为在这条线上h值为0.5

plt.contour(xx1, xx2, h, [0.5], linewidths=1, colors='b')

加正则化项的逻辑斯蒂回归

导入数据

data2 = loaddata('data2.txt', ',')

data2的格式为:

Dimensions: (118, 3)

[[-0.092742 0.68494 1. ]

[-0.21371 0.69225 1. ]

[-0.375 0.50219 1. ]

[-0.51325 0.46564 1. ]

[-0.52477 0.2098 1. ]]

作分布图

y = np.c_[data2[:,2]]

X = data2[:,0:2]

plotData(data2, 'Microchip Test 1', 'Microchip Test 2', 'y = 1', 'y = 0')

在上一个逻辑回归试验中,我们把sigmoid函数(即这里的g函数)设置的为简单的一次多项式。

在这个逻辑回归实验里,因为样本的分布比较复杂,可以采用多次多项式来代替ΘTX。这里取最高六次项。

取高阶多项式放入sigmoid函数进行模拟

from sklearn.preprocessing import PolynomialFeatures

# 生成一个六次多项式

poly = PolynomialFeatures(6)

# XX为生成的六次项的数据

XX = poly.fit_transform(data2[:,0:2])

# 六次项后有28个特征值了。即,之前我们只有两个特征值x1、x2,取六次项多项式后我们会有x1、x2、x1^2、x2^2、x1*x2、x1^2*x2、……,总共28项。

XX.shape

Out[12]: (118, 28)

正则化

因为取得的多项式最高项为6次,容易发生过拟合情况。将损失函数采取“正则化”处理,引入惩罚项。

正则化后损失函数:

向量化的损失函数(矩阵形式):

# 定义损失函数

def costFunctionReg(theta,reg ,XX, y):

m = y.size

h = sigmoid(XX.dot(theta))

J = -1.0*(1.0/m)*(np.log(h).T.dot(y)+np.log(1-h).T.dot(1-y)) +(reg/(2.0*m))*np.sum(np.square(theta[1:]))

if np.isnan(J[0]):

return(np.inf)

return(J[0])

与之对应的偏导(梯度):

向量化的偏导(梯度):

注意,我们另外自己加的参数 θ0 不需要被正则化

# 定义正则化损失函数的偏导

def gradientReg(theta, reg, XX, y):

m = y.size

h = sigmoid(XX.dot(theta.reshape(-1,1)))

grad = (1.0/m)*XX.T.dot(h-y) + (reg/m)*np.r_[[[0]],theta[1:].reshape(-1,1)]

return(grad.flatten())

设初始化theta为0向量,计算此时初始损失值

initial_theta = np.zeros(XX.shape[1])

costFunctionReg(initial_theta, 1, XX, y)

Out[9]: 0.69314718055994529

画出决策边界

定义预测函数,用来统计准确率。分类的阈值定为0.5,即计算的h(x)>0.5则分到1类(即通过),h(x)<0.5则分到0类(即不通过):

def predict(theta, X, threshold=0.5):

h = sigmoid(X.dot(theta.T)) >= threshold

# 返回的h值只会有两种,1或0

return(h.astype('int'))

决策边界,咱们分别来看看正则化系数lambda太大太小分别会出现什么情况Lambda = 0 : 就是没有正则化,这样的话,就过拟合咯

Lambda = 1 : 这才是正确的打开方式

Lambda = 100 : 卧槽,正则化项太激进,导致基本就没拟合出决策边界

fig, axes = plt.subplots(1,3, sharey = True, figsize=(17,5))

# 分别取lambda为0、1、100

for i, C in enumerate([0.0, 1.0, 100.0]):

# 最优化 costFunctionReg

res2 = minimize(costFunctionReg, initial_theta, args=(C, XX, y), jac=gradientReg, options={'maxiter':3000})

# 准确率

accuracy = 100.0*sum(predict(res2.x, XX) == y.ravel())/y.size

# 对X,y的散列绘图

plotData(data2, 'Microchip Test 1', 'Microchip Test 2', 'y = 1', 'y = 0', axes.flatten()[i])

# 画出决策边界

x1_min, x1_max = X[:,0].min(), X[:,0].max(),

x2_min, x2_max = X[:,1].min(), X[:,1].max(),

xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max))

h = sigmoid(poly.fit_transform(np.c_[xx1.ravel(), xx2.ravel()]).dot(res2.x))

h = h.reshape(xx1.shape)

axes.flatten()[i].contour(xx1, xx2, h, [0.5], linewidths=1, colors='g');

axes.flatten()[i].set_title('Train accuracy {}% with Lambda = {}'.format(np.round(accuracy, decimals=2), C))

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值