高斯拟合原理_多元高斯分布与高斯判别分析模型

23b13455d67fb65cf5ed24c7aa84f579.png
本篇为CS229 Lecture5的笔记。上一章笔记见监督学习与线性模型

重点参考:

  • 浅谈「正定矩阵」和「半正定矩阵」
  • 高斯判别分析
  • 矩阵求导术(上)

目录

  • 矩阵知识回顾
  • 概率知识回顾
  • 多元正态(高斯)分布
  • 判别模型VS生成模型
  • 高斯判别分析模型(GDA)的推导
  • logistic回归的鲁棒性

矩阵知识回顾

  1. 表示方阵
    的逆,该逆满足条件:
  2. 并非所有矩阵都存在逆:根据定义,非方阵不存在逆;此外一部分特殊的方阵也存在逆不存在的情况
  3. 对于矩阵
    ,若
    存在,则称
    为可逆的或者非奇异的;若
    不存在,则称
    为不可逆的或者奇异的
  4. 矩阵是否满秩是判断矩阵是否可逆的充分必要条件,满秩时矩阵可逆,反之亦然
  5. 正定矩阵和负定矩阵总是满秩的,即它们总是可逆的
  6. 半正定矩阵是正定矩阵的推广,半正定矩阵的行列式是非负的(与之对应的,正定矩阵的行列式恒大于零)
  7. [1]
  8. [1]

概率知识回顾

  1. 随机变量
    的期望
    又被称为随机变量的均值
  2. 随机变量
    的方差被用于度量该变量在变量均值周围的分布情况,随机变量
    方差
    定义为
  3. 对于任意常数
    ,有
  4. 对方差的表达式进行化简:
    ,将展开式中的
    视为常数,根据上一条提到的性质继续化简得:
  5. 推及到二元随机变量的情况:协方差[2]被用于度量两个变量的总体误差,定义为
    ,而方差是协方差的一种特殊情况,即两个变量相同的情况
  6. 对协方差的定义进行化简可得
    ;若随机变量
    互为统计独立的,则
    ,随机变量
    之间的协方差为0
  7. 推及到多元随机变量的情况:将多元随机变量写成向量的形式
    ,对于多元随机变量向量
    ,其期望
    ;将向量
    推广至矩阵形式
    ,该矩阵的期望
  8. 对于多元随机变量向量
    ,它的协方差矩阵
    的方阵,其
    位置的元素为
    ,协方差矩阵的完整形式为:
    ;协方差矩阵这个概念是对于标量随机变量方差的一般化推广
    [3]
  9. 根据协方差的定义以及上面提及矩阵期望的性质,对协方差矩阵进行化简,
    ,从最终的化简结果也能看出,不论是方差、协方差还是协方差矩阵,它们之间都存在着优美的一致性
  10. 多元随机变量的协方差矩阵总是半正定的[4]:给定任意能使
    成立的
    ,将向量
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值