图着色问题是一个著名的NP完全问题。给定无向图,,问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色?
但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请你判断这是否是图着色问题的一个解。
输入格式:
输入在第一行给出3个整数V(0)、E(≥)和K(0),分别是无向图的顶点数、边数、以及颜色数。顶点和颜色都从1到V编号。随后E行,每行给出一条边的两个端点的编号。在图的信息给出之后,给出了一个正整数N(≤),是待检查的颜色分配方案的个数。随后N行,每行顺次给出V个顶点的颜色(第i个数字表示第i个顶点的颜色),数字间以空格分隔。题目保证给定的无向图是合法的(即不存在自回路和重边)。
输出格式:
对每种颜色分配方案,如果是图着色问题的一个解则输出Yes,否则输出No,每句占一行。
输入样例:
6 8 3
2 1
1 3
4 6
2 5
2 4
5 4
5 6
3 6
4
1 2 3 3 1 2
4 5 6 6 4 5
1 2 3 4 5 6
2 3 4 2 3 4
输出样例:
Yes
Yes
No
No
/**
*
*/
package com.xingbing.tianti;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashSet;
import java.util.Set;
import java.util.StringTokenizer;
/**
* @author 邢兵
* @data
* @description
*/
public class L2023 {
public static int arr[];
public static int v;
public static int a[][];
public static void main(String[] args) throws NumberFormatException, IOException {
Scanner in = new Scanner(System.in);
v = in.nextInt();//定点数
int e = in.nextInt();//边数
int k = in.nextInt();//颜色数
a = new int[v+1][v+1];
for(int i=0;i
int start = in.nextInt();
int end = in.nextInt();
a[start][end] = 1;
a[end][start] = 1;
}
int n = in.nextInt();
arr = new int[v+1];//保存每个边的颜色
for(int i=0;i
Set set = new HashSet();
for(int j = 1;j<=v;j++){
int x = in.nextInt();
set.add(x);
arr[j] = x;
}
if(set.size()!=k){
System.out.println("No");
}else{
if(fun()){
System.out.println("Yes");
}else{
System.out.println("No");
}
}
}
}
public static boolean fun(){
for(int i=1;i<=v;i++){
for(int j=1;j<=v;j++){
if(a[i][j]==1&&arr[i]==arr[j]){
return false;
}
}
}
return true;
}
}