在数值计算过程中,对于计算结果的准确性和效率有很高的要求,但是这两者之间往往互相矛盾;而使用柯朗数可用于平衡两者。
1、柯朗数的定义:
C = sqrt(gh)*t/s
其中,t是时间步长,s是网格在水平方向的间距。
柯朗数的意义在于表示了在单位时间步长中,有多少个网格的信息发生了移动。经过正确的调整,可以更好地加速收敛和增强解的稳定性。
2、C语言实现柯朗数计算:
依据上述方程,在实际计算中采用C语言实现计算固液界面上的柯朗数,结果如下:
void localCourantNumber()
{
double rhoe,rhon,rhot;
for(i=;i<=nxm-;i++) //Calculation of local Courant number only at internal faces
{
ieast = i + ;
dxpe = xc[ieast] - xc[i];
fxe = (xf[i]-xc[i])/dxpe;
fxp = 1.0 - fxe;
for(j=;j<=nym;j++)
{
jnorth = j + ;
dypn = yc[jnorth] - yc[j];
fyn = (yf[j] - yc[j])/dypn;
fyp = 1.0 - fyn;
for(k=;k<=nzm;k++)
{
ktop = k + ;
dzpt = zc[ktop]-zc[k];
fzt = (zf[k] - zc[k])/dzpt;
fzp = 1.0 - fzt;
//Calculating density at cell interface
rhoe = fxp * rho[i][j][k] + fxe * rho[ieast][j][k];
/* rhoe = 2.0 * rho[i][j][k] * rho[ieast][j][k]/( rho[i][j][k] + rho[ieast][j][k]);*/
s = (yf[j]-yf[j-])*(zf[k]-zf[k-]);
vole = dxpe * s;
//Sum of courant numbers of outflow faces of donor cell
Ce[i][j][k] = fabs(Fe[i][j][k]/(rhoe*vole))*dt;
/* printf("Ce=%e\n",Ce[i][j][k]);*/
}
}
}
for(i=;i<=nxm;i++) //Calculation of local Courant number only at internal faces
{
ieast = i + ;
dxpe = xc[ieast] - xc[i];
fxe = (xf[i]-xc[i])/dxpe;
fxp = 1.0 - fxe;
for(j=;j<=nym-;j++)
{
jnorth = j + ;
dypn = yc[jnorth] - yc[j];
fyn = (yf[j] - yc[j])/dypn;
fyp = 1.0 - fyn;
for(k=;k<=nzm;k++)
{
ktop = k + ;
dzpt = zc[ktop]-zc[k];
fzt = (zf[k] - zc[k])/dzpt;
fzp = 1.0 - fzt;
//Calculating density at cell interface
rhon = fyp * rho[i][j][k] + fyn * rho[i][jnorth][k];
/* rhon = 2.0 * rho[i][j][k] * rho[i][jnorth][k]/( rho[i][j][k] + rho[i][jnorth][k]);*/
s = (xf[i]-xf[i-])*(zf[k]-zf[k-]);
voln = s * dypn;
//Sum of courant numbers of outflow faces of donor cell
Cn[i][j][k] = fabs(Fn[i][j][k]/(rhon*voln))*dt;
/* printf("Ce=%e\n",Ce[i][j][k]);*/
}
}
}
for(i=;i<=nxm;i++) //Calculation of local Courant number only at internal faces
{
ieast = i + ;
dxpe = xc[ieast] - xc[i];
fxe = (xf[i]-xc[i])/dxpe;
fxp = 1.0 - fxe;
for(j=;j<=nym;j++)
{
jnorth = j + ;
dypn = yc[jnorth] - yc[j];
fyn = (yf[j] - yc[j])/dypn;
fyp = 1.0 - fyn;
for(k=;k<=nzm-;k++)
{
ktop = k + ;
dzpt = zc[ktop]-zc[k];
fzt = (zf[k] - zc[k])/dzpt;
fzp = 1.0 - fzt;
//Calculating density at cell interface
rhot = fzp * rho[i][j][k] + fzt * rho[i][j][ktop];
/* rhot = 2.0 * rho[i][j][k] * rho[i][j][ktop]/( rho[i][j][k] + rho[i][j][ktop]);*/
s = (xf[i]-xf[i-])*(yf[j]-yf[j-]);
volt = s * dzpt;
//Sum of courant numbers of outflow faces of donor cell
Ct[i][j][k] = fabs(Ft[i][j][k]/(rhot*volt))*dt;
/* printf("Ce=%e\n",Ce[i][j][k]);*/
}
}
}
for(i=;i<=nxm;i++) //Calculation of local Courant number only at internal faces
{
for(j=;j<=nym;j++)
{
for(k=;k<=nzm;k++)
{
COutD[i][j][k] = Ce[i][j][k] + Cn[i][j][k] + Ct[i][j][k];
/* printf("COutD=%lf\n",COutD[i][j][k]);*/
/* printf("Ce=%e\n",Ce[i][j][k]);*/
/* printf("Cn=%e\n",Cn[i][j][k]);*/
/* printf("Ct=%e\n",Ct[i][j][k]);*/
}
}
}
}
3、柯朗数使用的注意事项:
在fluent中,用courant number 来调节计算的稳定性与收敛性。一般来说,随着courantnumber 的从小到大的变化,收敛速度逐渐加快,但是稳定性逐渐降低。所以具体的问题,在计算的过程中,最好是把Courant number 从小开始设置,看看迭代残差的收敛情况,如果收敛速度较慢而且比较稳定的话,可以适当的增加courant number 的大小,根据自己具体的问题,找出一个比较合适的courant number,让收敛速度能够足够的快,而且能够保持它的稳定性。
Generally, in the explicit schemes of differential method, Courant number is an important number which should be less than 1 in order to assure the stability. However, if the Courant number is too small, much computation time will be lost. So the Courant number could be one of those important parameters affecting computation cost and stability. we could use Courant number to control the time step in the transient simulation in CFD codes. Here is some configuration parameters which could be used in simulation with OpenFOAM。
CFD计算
47 求解器为flunet5/6在设置边界条件时,specify boundary types下的types中有三项关于interior,interface,internal设置,在什么情况下设置相应 ...
Fluent经典问题答疑
原文链接1 原文链接28 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 边界条件与初始条件是控制方程有确定解的前提. 边界条件是在求解区域的边界上所求解的变量或其导数随时间和地点的变化规律. ...
Coupled和segregated【转载】
转载自:http://blog.sina.com.cn/s/blog_67873f6c0100ltq6.html 问题1: 我看中文帮组里说是'分离'的意思?我绝对翻译不太好,请问有更好的翻译吗? 和 ...
Fluent 时间步长【转载】
转载自:http://blog.sina.com.cn/s/blog_4ada3be301011rjp.html 用FLUENT计算非稳态问题,是不是在计算时必须保证在每个时间步timestep里都要 ...
JavaScript Math和Number对象研究
1. Math 对象 1.1 介绍 Math 对象,是数学对象,提供对数据的数学计算,如:获取绝对值.向上取整等.无构造函数,无法被初始化,只提供静态属性和方法. 1.2 构造函数 无 : ...
一些对数学领域及数学研究的个人看法(转载自博士论坛wcboy)
转自:http://www.math.org.cn/forum.php?mod=viewthread&tid=14819&extra=&page=1 原作者: wcboy 现在 ...
Javascript判断object还是list/array的类型(包含javascript的数据类型研究)
前提:先研究javascript中的变量有几种,参考: http://www.w3school.com.cn/js/js_datatypes.asp http://glzaction.iteye.co ...
Nagios学习实践系列——配置研究[监控当前服务器]
其实上篇Nagios学习实践系列——基本安装篇只是安装了Nagios基本组件,虽然能够打开主页,但是如果不配置相关配置文件文件,那么左边菜单很多页面都打不开,相当于只是一个空壳子.接下来,我们来学习研 ...
AP(affinity propagation)研究
待补充…… AP算法,即Affinity propagation,是Brendan J. Frey* 和Delbert Dueck于2007年在science上提出的一种算法(文章链接,维基百科) 现 ...
随机推荐
jquery选择器demo
大部分选择器都是基于下面这个简单的页面:
(转)http接口测试——Jmeter接口测试实例讲解
http://my.oschina.net/hellotest/blog/512482
H.264编码之DCT变换原理
DCT变换是一种与FFT变换紧密相连的数学运算,当函数为偶函数是,其傅立叶展开式只有余弦项,因些称为余弦变换,其离散化的过程称为DCT(离散余弦)变换.下面我们就推导下H.264的4x4整数DCT公式 ...
GridControl 列中显示图片 z
如何在 DevExpress.XtraGrid.GridControl 显示图片列. 方法很多,我把它们逐一写在附言中,方便大家分情况合理使用. 附言1 附言2 附言3 第 1 条附言 · ...
AngularJS的开发工具---yeoman 简易安装
AngularJS 不错,yeoman作为推荐开发工具,网上的安装步骤较烦,这里给出简易步骤. 1.安装 Ruby 自己到 Ruby 官方下载最新安装包: http://rubyinstall ...
闲扯 Javascript 03 时钟和QQ延时框
时钟 : 所用到得图片 : 开启定时器 setInterval 间隔型 setTimeout 延时型 停止定时器 clearInterval clearTimeout 效果思路 获取系统时间 D ...
C语言:第0次作业
问题1: 你为什么选择计算机专业?你认为你的条件如何?和这些博主比呢? 感性地讲,高中时意外看到了电影,自那时起就将将马克扎克伯格视为偶像,他天才的智慧和长远的眼光深深吸引了我 ...
tomcat源码阅读之SingleThreadModel
一.接口简介: 实现了SingleThreadModel接口的servlet类只能保证在同一时刻,只有一个线程执行该servlet实例的service方法,在tomcat实现中会创建多个servlet ...
tensorflow初次接触记录,我用python写的tensorflow第一个模型
tensorflow初次接触记录,我用python写的tensorflow第一个模型 刚用python写的tensorflow机器学习代码,训练60000张手写文字图片,多层神经网络学习拟合17000 ...
javascript中的call(),apply(),bind()方法的区别
之前一直迷惑,记不住call(),apply(),bind()的区别.不知道如何使用,一直处于懵懂的状态.直到有一天面试被问到了这三个方法的区别,所以觉得很有必要总结一下. 如果有不全面的地方,后续再 ...