感知器算法的基本原理和步骤_Python机器学习——01感知器学习算法

0a685166cab92f0bec36937154bd15c3.png

本篇文章介绍塞巴斯蒂安·拉施卡《Python机器学习》中的第一个算法——感知器学习算法,之后会有文章分析书中的其它算法。


本书的内容非常基础,没有涉及大量的数学知识,书本不厚,并且有配套的代码实例,适合初学者。本人是在淘宝上买的,但是淘宝好物推荐里搜不到,只能用京东。标价88,淘宝上买大约50,所以这里挑了2个价位仅供参考(都是第2版):

如果不想购买也可以尝试下载相关文件

书本大部分内容(含代码)都可以在以下网址下载(需VPN):

Python Machine Learning - Second Edition

Python Machine Learning - Third Edition


下面开始本文的正文

感知器学习算法是书中第一个算法,是机器学习的入门算法

这里自己大致将注释翻译了一遍"/翻译",原文也完全保留了

import 

用语言表述就是感知器Perceptron有三个参数:eta、niter、randomstate两个属性:

定义了四个函数

  1. :初始化;
  2. :更新
    及计算
  3. :对X计算输入值;
  4. :使用计算得到的
    进行预测。

主要介绍

函数:两个参数为
第一层循环:迭代n_iter次
    errors=0,错误分类的数量归0
    第二层循环:每个样本迭代一次,xi、target分别为每个样本特征与类标签
        计算权重更新(公式写在后面)
        错误分类数计数
    结束第二层循环
    错误分类数存储为向量
结束第一层循环
返回self

权重更新:

(不含w[0])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值