本期问题能否聊一聊深度学习中的调参技巧?
我们主要从以下几个方面来讲.1. 深度学习中有哪些参数需要调?
2. 深度学习在什么时候需要动用调参技巧?又如何调参?
3. 训练网络的一般过程是什么?
1. 深度学习有哪些需要们关注的参数呢?
大家记住一点:需要用到调参技巧的参数都是超参数!!因此,这个问题还可以换成更专业一点:神经网络中有哪些超参数?主要从两个方面来看:和网络设计相关的参数:神经网络的网络层数、不同层的类别和搭建顺序、隐藏层神经元的参数设置、LOSS层的选择、正则化参数
和训练过程相关的参数:网络权重初始化方法、学习率使用策略、迭代次数、小批量数据 minibatch的大小、输入数据相关
2. 深度学习在什么时候需要动用调参技巧,以及如何进行调参呢?
通常网络训练的结果一般表现为以下五种情况:过拟合、欠拟合、恰好拟合,趋于收敛但一直在震荡以及完全不收敛。关于过拟合、欠拟合和恰好拟和,在机器学习中的定义描述如下:(不知道的可以移步此博客:https://www.imooc.com/article/44090 )
过拟合、欠拟合、恰好拟合的现象,从图像看就表现成如下:
我们分别来看一下,在这几种种情况下,需要考虑调整哪些参数?
先上图:
首先来看恰好拟合的情况!
恰好拟合ÿ