深度学习这么调参训练_聊一聊深度学习中的调参技巧?

本文探讨深度学习中调参的重要性,详细介绍了需要调参的超参数类型,包括网络设计和训练过程相关的参数。针对过拟合、欠拟合等常见问题,提供了解决方案,并分享了调参的一般过程。此外,还提到了自动调参方法,如Grid Search、Random Search和Bayesian Optimization。
摘要由CSDN通过智能技术生成

本期问题能否聊一聊深度学习中的调参技巧?

我们主要从以下几个方面来讲.1. 深度学习中有哪些参数需要调?

2. 深度学习在什么时候需要动用调参技巧?又如何调参?

3. 训练网络的一般过程是什么?

1. 深度学习有哪些需要们关注的参数呢?

大家记住一点:需要用到调参技巧的参数都是超参数!!因此,这个问题还可以换成更专业一点:神经网络中有哪些超参数?主要从两个方面来看:和网络设计相关的参数:神经网络的网络层数、不同层的类别和搭建顺序、隐藏层神经元的参数设置、LOSS层的选择、正则化参数

和训练过程相关的参数:网络权重初始化方法、学习率使用策略、迭代次数、小批量数据 minibatch的大小、输入数据相关

2. 深度学习在什么时候需要动用调参技巧,以及如何进行调参呢?

通常网络训练的结果一般表现为以下五种情况:过拟合、欠拟合、恰好拟合,趋于收敛但一直在震荡以及完全不收敛。关于过拟合、欠拟合和恰好拟和,在机器学习中的定义描述如下:(不知道的可以移步此博客:https://www.imooc.com/article/44090 )

过拟合、欠拟合、恰好拟合的现象,从图像看就表现成如下:

我们分别来看一下,在这几种种情况下,需要考虑调整哪些参数?

先上图:

首先来看恰好拟合的情况!

恰好拟合ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值