小红书去水印代码_最新小红书视频去水印解析API接口

PHP 代码:

//开发者后台生成的appid

$appId = '';

//开发者后台生成的appsecret

$appSecret = '';

//需要解析的url

$url = '';

$param = [

'appid'=> $appId,

'appsecret'=> $appSecret,

'url'=> $url,

];

//得到请求的地址:https://api-sv.videoparse.cn/api/video/normalParse?appid=2m3Ju99MPXrNtkgH&appsecret=bNG3JYjT83qp4cib&url=http%3A%2F%2Fv.douyin.com%2Fa2X5ab%2F

$apiUrl = 'https://api-sv.videoparse.cn/api/video/normalParse?'.http_build_query($param);

$videoInfo = file_get_contents($apiUrl);

print_r($videoInfo);

字段

类型

必填

备注

赋值

appid

string

Y

appid

开发者后台生成的appid

appsecret

string

Y

appsecret

开发者后台生成的appsecret

url

string

Y

要解析的短视频地址

返回结果:

成功:

{"code":0,"msg":"success","body":{"source":"douyin","url":"http:\/\/v.douyin.com\/2duavD\/","title":"\u767e\u5c81\u5c71\u4e3a\u4ec0\u4e48\u79f0\u4e3a\u6c34\u4e2d\u8d35\u65cf \u89c6\u9891\u5bfb\u627e\u7b54\u6848@\u6296\u97f3\u5c0f\u52a9\u624b","cover_url":"https:\/\/p1.pstatp.com\/large\/1bda8000852aa26656c12.jpg","video_url":"http:\/\/v6-dy.ixigua.com\/2c3a7f072b949101ceac0d465b35ef82\/5ca88513\/video\/m\/2203c9cfb2a446e4c99bb6b34927f3e875911619893d00005d48e8bf9a57\/?rc=am13aWg5bnlobDMzN2kzM0ApQHRAbzM2NzU1ODkzNDo1Ojk3PDNAKXUpQGczdylAZmxkamV6aGhkZjs0QDVecWBkb15pLV8tLWItL3NzLW8jbyM2LzYtLi0uLS0yMi4tLS4vaTpiLW8jOmAtbyNtbCtiK2p0OiMvLl4=","video_key":"ZRGO3V1JNKJ270QWE5"}}

失败:

{"code":10001,"msg":"parameter lost","body":[]}

返回字段注释

字段名

注释

备注

code

错误码

错误码:请参考错误码说明

msg

错误信息

错误码:请参考错误码说明

body

source

解析视频来源

如:douyin、kuaishou

url

开发者请求的url

title

短视频标题

cover_url

短视频封面

video_url

无水印的视频地址

此地址有有效期限制,不可作为永久存储

Videoparse(https://www.videoparse.cn) 短视频解析API接口已支持:抖音、快手、小红书、西瓜视频、今日头条、微视、火山小视频、陌陌视频、映客视频、小咖秀、开眼、全民小视频、全民K歌、最右、小影、微博、美拍、皮皮虾等平台的短视频去水印解析。

### Java 实现小红书图片或视频去水印的方法 对于使用Java实现从小红书中去除图片或视频上的水印,主要的技术栈会涉及到Java编程语言本身以及一些第三方库的支持。下面提供一种基于FFmpeg和OpenCV的解决方案。 #### 使用FFmpeg处理视频并提取帧 为了操作视频文件,在Java环境中可以调用命令行工具FFmpeg来进行预处理工作,比如截取特定时间点的画面作为静态图像用于后续分析。这一步骤可以通过ProcessBuilder类执行外部程序完成[^1]: ```java import java.io.IOException; public class VideoProcessor { public static void main(String[] args) throws IOException, InterruptedException { ProcessBuilder pb = new ProcessBuilder( "ffmpeg", "-i", "input_video.mp4", "-vf", "fps=1", "frames/%03d.png"); pb.inheritIO(); Process process = pb.start(); int exitCode = process.waitFor(); // Wait for the command to finish execution. System.out.println("Exit Code: " + exitCode); } } ``` 这段代码将会把输入视频`input_video.mp4`按照每秒一帧的速度保存到名为`frames/`目录下的PNG格式图片序列中。 #### 利用OpenCV检测并移除水印 一旦获得了单张或多张代表性的静止画面之后,则可借助计算机视觉库OpenCV来定位并尝试消除这些画面上存在的固定模式——即所谓的“水印”。这里给出一个简单的例子展示如何加载一张测试图,并应用基本形态学运算模拟清除过程: ```java import org.opencv.core.*; import org.opencv.imgcodecs.Imgcodecs; import org.opencv.imgproc.Imgproc; public class WatermarkRemover { static{System.loadLibrary(Core.NATIVE_LIBRARY_NAME);} private static final String INPUT_IMAGE_PATH = "./test_image_with_watermark.jpg"; private static final String OUTPUT_IMAGE_PATH = "./output_without_watermark.jpg"; public static void removeWaterMark() { Mat srcImage = Imgcodecs.imread(INPUT_IMAGE_PATH); // Convert image into grayscale and apply Gaussian blur Mat graySrc = new Mat(), blurredGraySrc = new Mat(); Imgproc.cvtColor(srcImage, graySrc, Imgproc.COLOR_BGR2GRAY); Imgproc.GaussianBlur(graySrc, blurredGraySrc, new Size(7, 7), 0); // Perform binary thresholding on the blurred image Mat threshedMat = new Mat(); Imgproc.threshold(blurredGraySrc, threshedMat, 180, 255, Imgproc.THRESH_BINARY_INV | Imgproc.THRESH_OTSU); // Find contours of objects within the thresholded image List<MatOfPoint> contoursList = new ArrayList<>(); Mat hierarchy = new Mat(); Imgproc.findContours(threshedMat, contoursList, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE); // Draw filled white rectangles over detected regions (assuming they are watermarks) Core.fillPoly(srcImage, contoursList.toArray(new MatOfPoint[contoursList.size()]), new Scalar(255, 255, 255)); // Save output without watermark Imgcodecs.imwrite(OUTPUT_IMAGE_PATH, srcImage); } public static void main(String[] args){ removeWaterMark(); } } ``` 请注意上述示例仅适用于简单场景下矩形形状固定的透明度较低的文字型水印;实际应用场景可能更加复杂多变,因此还需要进一步优化算法逻辑以适应不同类型的干扰因素。 最后再利用FFmpeg将处理过的每一帧重新编码组合成完整的无水印版本的新视频文件即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值