此文记录我面试中遇到的问题以便学习积累。
我查了一下这个面试题还是比较常见的,只是我这种不刷Leecode的人没见过。
题目:两个二进制的字符串,求这两个二进制相加以后的和,输出当然也是二进制的格式了。
/**
* Given two binary strings, return their sum (also a binary string).
*
* For example, a = "11" b = "1" Return "100".
*/
示例 1:
输入: a = "11", b = "1"
输出: "100"
示例 2:
输入: a = "1010", b = "1011"
输出: "10101"
提示:
· 每个字符串仅由字符 '0' 或 '1' 组成。
· 1 <= a.length, b.length <= 10^4(字符串的长度其实可以无限长,如果长度在有限的整型数字范围还会有另外一种解法)
· 字符串如果不是 "0" ,就都不含前导零。
分析思路:
为啥 "11" + "1" = "100"?
因为是二进制的,所以只要加和是2 就要进位了:
- 首先想到的是整个字符串转二进制处理,行不通,因为字符串长度不限,所以会有溢出的问题。
- 然后想到只能分而治之了,把字符串拆开一位一位的处理,那么再加上考虑进位的问题就可以了。
以下是C++ 的实现版本:
#include #include #include #include using namespace std;string addBinary(string a, string b) { int l1=a.length()-1,l2=b.length()-1; string sum = ""; int s=0,c=0; while(l1>=0 || l2>=0 || c) { int num1 = l1>=0?a[l1--]-'0':0; int num2 = l2>=0?b[l2--]-'0':0; s = num1 + num2 + c; c = s>>1; sum = char(s%2 + '0') + sum; } return sum;}int main() {cout << addBinary("11","1");return 0;}
下面是Java 代码的实现:
public static String addBinary(String a, String b) { int i = a.length() - 1; int j = b.length() - 1; int da = 0; int db = 0; int carry = 0; StringBuffer result = new StringBuffer(); while (i >= 0 && j >= 0) { da = a.charAt(i--) == '0' ? 0 : 1; db = b.charAt(j--) == '0' ? 0 : 1; int d = da + db + carry; result.append(d % 2 == 0 ? '0' : '1'); carry = d >> 1; } if (i >= 0) { while (i >= 0) { da = a.charAt(i--) == '0' ? 0 : 1; int d = da + carry; result.append(d % 2 == 0 ? '0' : '1'); carry = d >> 1; } } else if (j >= 0) { while (j >= 0) { db = b.charAt(j--) == '0' ? 0 : 1; int d = db + carry; result.append(d % 2 == 0 ? '0' : '1'); carry = d >> 1; } } if (carry == 1) { result.append('1'); } return result.reverse().toString(); } public static void main(String args[]) { String consult=addBinary("11","1"); System.out.print("consult is "+consult); }
下面是Python 代码的实现:
def addBinary(self, a, b): while len(a) > len(b): b = '0' + b while len(a) < len(b): a = '0' + a sum_val = [0] * len(a) # 记录逐位相加的结果, # 判断是否有进位 add_bit = 0 carry = 0 for i in range( len(a)-1, -1, -1): add_bit = int(a[i]) + int(b[i]) + carry # 字符只包含 1 和 0 # 不包含进位,相加结果最大为 2 # 包含进位,可能为 3 if add_bit >= 2: carry = 1 # 逢 2 进位,当前位置的元素则为 add_res - 2 sum_val[i] = str(add_bit - 2) else: carry = 0 sum_val[i] = str(add_bit) # 最后还需要再次确认,最终的运算中是否有进位 return ''.join(['1'] + sum_val) if carry else ''.join(sum_val)
如果字符长度有限,可以使用二进制相与和异或计算的方法:
(此处ZZ博客:https://www.cnblogs.com/yiluolion/p/13183738.html)
这里再提及下,按位与,异或 运算。按位与 运算:是指参与运算的两数对应二进制相与。运算的规则是,当对应的进制位都为 1 时,结果才为 1,否则都为 0。异或 运算:也叫半加运算,因为它的运算法则相当于不带进位的二进制加法。例如:
- 0⊕0=0,
- 1⊕0=1,
- 0⊕1=1,
- 1⊕1=0
可以看出,异或运算法则与加法法则相同,但是不带进位。
回到当前的题目,我们现在要用位运算来模拟加法求出结果。现在我们拆解一下,先进行 异或 运算,求得无进位结果。根据 按位与,同为 1,结果位才是 1 的运算规则,可以求得进位。循环运算,直到最终进位为 0 时,也就能得到结果。
具体的算法设计如下:
- 首先将给定字符串 a, b 转换为整数型数字 m, n
- 当有进位时:先进行 异或 运算: ans = m ^ n再进行 按位与 运算获得进位: carry = (m & n) << 1。(这里左移是因为进位应该在更高一位)重置 m, n 的值。此时 m 表示无进位相加结果, n 表示进位,继续循环
- 上面 m 相当于存储结果,返回 m 的二进制形式(注意返回字符中 0b)
代码实现
class Solution: def addBinary(self, a: str, b: str) -> str: # 转换为整数型数值 !! 此处要考虑溢出危险 m, n = int(a, 2), int(b, 2) # n 在循环中存储进位 # 当进位为 0,循环结束 while n: # 异或计算无进位相加结果 ans = m ^ n # 计算进位 # 进位应该在更高一位,所以需要左移 carry = (m & n) << 1 # 重置 m,n;此时 m 存储结果,n 存储进位 m = ans n = carry # m 存储结果,当 n 为 0,表示无进位 # 循环结束,返回 m 的二进制形式 # 注意转换成二进制形式的前缀 '0b' return bin(m)[2:]
总结:
从时间复杂度来看 Python > Java > C++
从空间复杂度来看 Java > Python > C++