python数学工具之积分_QuantLib 金融计算——数学工具之数值积分

如果未做特别说明,文中的程序都是 Python3 代码。

QuantLib 金融计算——数学工具之数值积分

载入模块

import QuantLib as ql

import scipy

from scipy.stats import norm

from scipy.stats import lognorm

print(ql.__version__)

1.12

概述

quantlib-python 提供了许多方法计算标量函数 \(f : R \to R\) 在闭区间上的积分:

\[\int_a^b f(x) dx

\]

对于主要的积分方法,必须提供两个参数:

绝对精度:如果当前计算结果和前一个计算结果的差小于精度,则停止计算。

最大计算次数:如果达到最大计算次数,则停止计算。

对于某些特殊的数值积分,例如高斯积分,还需要提供其他额外参数。

常见积分方法

首先讨论最普通最常见的一类数值积分,quantlib-python 提供了下列方法:

TrapezoidIntegralMidPoint

SimpsonIntegral

GaussLobattoIntegral

GaussKronrodAdaptive

GaussKronrodNonAdaptive

这些方法在一般的数值分析教科书中都有详细的讨论。在 quantlib-python 中,上述数值积分器对象的构造方式是相同的,如下:

myIntegrator = ql.XXXintegrator(absoluteAccuracy,

maxEvaluations)

计算闭区间 \([a, b]\) 上的积分值:

myIntegrator(f, a, b)

其中 f 是一个“单参数”函数,返回一个浮点数。

例子 1,标准正态密度函数上的积分

def testIntegration1():

absAcc = 0.00001

maxEval = 1000

a = 0.0

b = scipy.pi

numInt1 = ql.TrapezoidIntegralMidPoint(absAcc, maxEval)

numInt2 = ql.SimpsonIntegral(absAcc, maxEval)

numInt3 = ql.GaussLobattoIntegral(maxEval, absAcc)

numInt4 = ql.GaussKronrodAdaptive(absAcc, maxEval)

numInt5 = ql.GaussKronrodNonAdaptive(absAcc, maxEval, absAcc)

analytical = norm.cdf(b) - norm.cdf(a)

print('{0:<30}{1}'.format('Analytical:', analytical))

print('{0:<30}{1}'.format('Midpoint Trapezoidal:', numInt1(norm.pdf, a, b)))

print('{0:<30}{1}'.format('Simpson:', numInt2(norm.pdf, a, b)))

print('{0:<30}{1}'.format('Gauss Lobatto:', numInt3(norm.pdf, a, b)))

print('{0:<30}{1}'.format('Gauss Kronrod Adpt:', numInt4(norm.pdf, a, b)))

print('{0:<30}{1}'.format('Gauss Kronrod Non Adpt:', numInt5(norm.pdf, a, b)))

testIntegration1()

Analytical: 0.4991598418317367

Midpoint Trapezoidal: 0.4991643496589137

Simpson: 0.4991598398355923

Gauss Lobatto: 0.49916005276697556

Gauss Kronrod Adpt: 0.49915984183173506

Gauss Kronrod Non Adpt: 0.4991598418317367

所有结果几乎是一致的。

下面是一个更复杂的例子,直接从欧式看涨期权的积分形式近似计算期权价格。

敲定价格为 \(K\) 的看涨期权的积分形式为:

\[e^{-r \tau} E(S - K)^+ = e^{-r \tau} \int_{K}^{\infty} (x-K)f(x)dx

\]

其中 \(f(x)\) 是对数正态分布的密度函数,均值为:

\[\log(S_0) + (r + \frac{1}{2} \sigma^2)\tau

\]

方差为:

\[s = \sigma \sqrt{\tau}

\]

通常 quantlib-python 提供的数值积分方法不接受额外参数,如果计算涉及额外参数,需要做特殊的转换,将额外参数和积分函数“绑定”成为一个单参数函数。

Python 的语言机制非常灵活,可以通过构造实现“函数体”来绑定积分区间和积分函数,积分区间作为类的参数。或者,可以更简单地编写一个返回函数的函数,

例子 2,积分上限采用 \(10 \times K\)

def callFunc(spot,

strike,

r,

vol,

tau):

mean = scipy.log(spot) + (r - 0.5 * vol * vol) * tau

stdDev = vol * scipy.sqrt(tau)

def inner_func(x):

return (x - strike) * \

lognorm.pdf(

x, stdDev, loc=0, scale=scipy.exp(mean)) * \

scipy.exp(-r * tau)

return inner_func

其中,内部函数 inner_func 作为对象被返回,inner_func 是一个单参数函数。

def testIntegration4():

spot = 100.0

r = 0.03

tau = 0.5

vol = 0.20

strike = 110.0

a = strike

b = strike * 10.0

ptrF = callFunc(spot, strike, r, vol, tau)

absAcc = 0.00001

maxEval = 1000

numInt = ql.SimpsonIntegral(absAcc, maxEval)

print("Call Value: ", numInt(ptrF, a, b))

testIntegration4()

与标准 Black-Scholes 公式得出的结果几乎一致。

Call Value: 2.611902550625855

高斯积分

通常,一个 n 点高斯求积通过选取合适的 \(x_i\) 和 \(w_i\)(\(i = 1, ..., n\))产生 2n − 1 阶(或较低阶)多项式的准确积分值构造出来,

\[\int_{-1}^1 f(x)dx \approx \sum_{i=1}^n w_if(x_i)

\]

存在不同类型的权重函数和区间形式,quantlib-python 提供了如下几种:

GaussLaguerreIntegration:计算 \(\int_0^{\infty} f(x)dx\) 的广义 Gauss Laguerre 积分;权重函数为 \(w(x,s) := x^s e^{-x} , s>-1\)

GaussHermiteIntegration:计算 \(\int_{-\infty}^{\infty} f(x)dx\) 的 Gauss Hermite 积分;权重函数为 \(w(x,\mu) = |x|^{2\mu} e^{-x^2} , \mu > -0.5\)

GaussJacobiIntegration:计算 \(\int_{-1}^1 f(x)dx\) 的Gauss Jacobi 积分;权重函数为 \(w(x,\alpha, \beta) = (1-x)^\alpha(1+x)^\beta , \alpha,\beta > 1\)

GaussHyperbolicIntegration:计算 \(\int_{-\infty}^{\infty} f(x)dx\) 的高斯双曲积分;权重函数为 \(w(x) = \frac{1}{\cosh(x)}\)

GaussLegendreIntegration:计算 \(\int_{-1}^1 f(x)dx\) 的 Gauss Legendre 积分;权重函数为 \(w(x)=1\)

GaussChebyshevIntegration:计算 \(\int_{-1}^1 f(x)dx\) 的第一类 Gauss Chebyshev 积分;权重函数为\(w(x) = \sqrt{(1-x^2)}\)

GaussChebyshev2ndIntegration:计算 \(\int_{-1}^1 f(x)dx\) 的第二类 Gauss Legendre 积分;权重函数为 \(w(x, \lambda) = (1+x^2)^{\lambda - 1/2}\)

例子 3

def testIntegration2():

gLagInt = ql.GaussLaguerreIntegration(16) # [0,\infty]

gHerInt = ql.GaussHermiteIntegration(16) # (-\infty, \infty)

gChebInt = ql.GaussChebyshevIntegration(64) # (-1, 1)

gChebInt2 = ql.GaussChebyshev2ndIntegration(64) # (-1, 1)

analytical = norm.cdf(1) - norm.cdf(-1)

print('{0:<15}{1}'.format("Laguerre:", gLagInt(norm.pdf)))

print('{0:<15}{1}'.format("Hermite:", gHerInt(norm.pdf)))

print('{0:<15}{1}'.format("Analytical:", analytical))

print('{0:<15}{1}'.format("Cheb:", gChebInt(norm.pdf)))

print('{0:<15}{1}'.format("Cheb 2 kind:", gChebInt2(norm.pdf)))

Laguerre: 0.49999230923944715

Hermite: 0.9999999834745512

Analytical: 0.6826894921370859

Cheb: 0.6827380724493052

Cheb 2 kind: 0.682595292164792

通常 quantlib-python 提供的高斯积分方法只针对固定的区间,例如 \([-1,1]\),如果需要计算其他区间上的积分,需要做特殊的转换,将积分区间和积分函数“绑定”成为一个单参数函数。区间 \([−1, 1]\) 向 \([a, b]\) 的转换相当简单

\[\int_a^b f(x)dx = \frac{b-a}{2} \int_{-1}^1f \left(\frac{b-a}{2}x + \frac{b+a}{2}\right) dx

\]

类似之前的做法,

def Func(f, a, b):

t1 = 0.5 * (b - a)

t2 = 0.5 * (b + a)

def inner_func(x):

return t1 * f(t1 * x + t2)

return inner_func

例子 4

def testIntegration3():

a = -1.96

b = 1.96

gChebInt = ql.GaussChebyshevIntegration(64)

analytical = norm.cdf(b) - norm.cdf(a)

f = Func(norm.pdf, a, b)

print('{0:<15}{1}'.format("Analytical:", analytical))

print('{0:<15}{1}'.format("Chebyshev:", gChebInt(f)))

testIntegration3()

Analytical: 0.950004209703559

Chebyshev: 0.9500271929144378

扩展阅读

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值