由Black-Scholes在1973年提出的期权定价模型,可以说是现代财务的起始点。我们首先以一个简单的欧式(Vanilla)期权为例,说明如何使用QuantLib套件,简单的完成价格与Greeks的计算。并且呼叫隐含波动性的计算函数,轻易的算出这个交易时重要的参数。下表List 1_1便是整个程序的列表。
程序分为7个段落,第一段为定价环境参数设定,第二段为市场参数设定,第三段金融工具参数设定,第四段为定价引擎的设定,第五段为定价结果产出,第六段为敏感性结果产出,第七段为隐含波动性的计算产出。
#001 import QuantLib as ql
# 1.Enviroment
#003 settings = ql.Settings.instance()
#004 evDate = ql.Date(8, 6, 2021)
#005 settings.setEvaluationDate(evDate)
#006 Cal = ql.NullCalendar()
#007 DC365 = ql.Actual365Fixed()
#008 settlementDays = 0
#009 refDate = Cal.advance(evDate, settlementDays, ql.Days, ql.Following, False)
#010 maturity = Cal.advance(refDate, 1, ql.Years, ql.Following, False)
#011
# 2.Market Data
#013 S0 = 100
#014 QS = ql.SimpleQuote(S0)
#015 h_QS = q

本文详细介绍了如何通过QuantLib库在Python中实现Black-Scholes模型,包括设置环境、市场参数、金融工具及定价引擎,展示了计算期权价格、Greeks值(如Delta、Gamma等)和隐含波动率的过程。适合金融工程和量化分析师学习实操。
最低0.47元/天 解锁文章
1068

被折叠的 条评论
为什么被折叠?



