python怎么计算图像梯度_opencv python图像梯度实例详解

这篇文章主要介绍了opencv python图像梯度实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

一阶导数与Soble算子

二阶导数与拉普拉斯算子

图像边缘:

Soble算子:

二阶导数:

拉普拉斯算子:

import cv2 as cv

import numpy as np

# 图像梯度(由x,y方向上的偏导数和偏移构成),有一阶导数(sobel算子)和二阶导数(Laplace算子)

# 用于求解图像边缘,一阶的极大值,二阶的零点

# 一阶偏导在图像中为一阶差分,再变成算子(即权值)与图像像素值乘积相加,二阶同理

def sobel_demo(image):

grad_x = cv.Sobel(image, cv.CV_32F, 1, 0) # 采用Scharr边缘更突出

grad_y = cv.Sobel(image, cv.CV_32F, 0, 1)

gradx = cv.convertScaleAbs(grad_x) # 由于算完的图像有正有负,所以对其取绝对值

grady = cv.convertScaleAbs(grad_y)

# 计算两个图像的权值和,dst = src1*alpha + src2*beta + gamma

gradxy = cv.addWeighted(gradx, 0.5, grady, 0.5, 0)

cv.imshow("gradx", gradx)

cv.imshow("grady", grady)

cv.imshow("gradient", gradxy)

def laplace_demo(image): # 二阶导数,边缘更细

dst = cv.Laplacian(image,cv.CV_32F)

lpls = cv.convertScaleAbs(dst)

cv.imshow("laplace_demo", lpls)

def custom_laplace(image):

# 以下算子与上面的Laplace_demo()是一样的,增强采用np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]])

kernel = np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]])

dst = cv.filter2D(image, cv.CV_32F, kernel=kernel)

lpls = cv.convertScaleAbs(dst)

cv.imshow("custom_laplace", lpls)

def main():

src = cv.imread("../images/lena.jpg")

cv.imshow("lena",src)

# sobel_demo(src)

laplace_demo(src)

custom_laplace(src)

cv.waitKey(0) # 等有键输入或者1000ms后自动将窗口消除,0表示只用键输入结束窗口

cv.destroyAllWindows() # 关闭所有窗口

if __name__ == '__main__':

main()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

本文标题: opencv python图像梯度实例详解

本文地址: http://www.cppcns.com/jiaoben/python/299473.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值