我是python的新手,正在尝试实现一种遗传算法,但需要其中一项操作的代码方面的帮助.
我是这样提出问题的:
>每个人我都由一串M个整数表示
> I中的每个元素e取值从0到N
> 0到N之间的每个数字都必须在I中至少出现一次
> e的值并不重要,只要每个唯一值元素采用相同的唯一值(将它们视为类标签)即可
> e小于或等于N
>每个I的N可以不同
应用交叉操作后,我可能会生成违反这些约束中一个或多个约束的子对象,因此我需要找到一种方法来对元素进行重新编号,以使它们保留其属性,但符合约束条件.
例如:
parent_1 (N=5): [1 3 5 4 2 1|0 0 5 2]
parent_2 (N=3): [2 0 1 3 0 1|0 2 1 3]
*** crossover applied at "|" ***
child_1: [1 3 5 4 2 1 0 2 1 3]
child_2: [2 0 1 3 0 1 0 0 5 2]
child_1显然仍然满足所有约束,因为N = 5且所有值0-5在数组中至少出现一次.
问题出在子2上-如果我们使用max(child_2)计算N的方式,我们得到的值为5,但是如果我们计算唯一值的数量,则N = 4,这就是N的值.我要问的(以很长的路要走,这是理所当然的)是一种好的,pythonic的方法:
child_2: [2 0 1 3 0 1 0 0 5 2]
*** some python magic ***
child_2': [2 0 1 3 0 1 0 0 4 2]
*or*
child_2'': [0 1 2 3 1 2 1 1 4 0]
child_2”用来说明值本身并不重要,只要唯一值的每个元素映射到相同值,就可以满足约束条件.
到目前为止,这是我尝试过的:
value_map = []
for el in child:
if el not in value_map:
value_map.append(el)
for ii in range(0,len(child)):
child[ii] = value_map.index(child[ii])
这种方法可以工作并返回类似于child_2的结果,但是我无法想象它在字符串上两次迭代的方式非常有效,所以我想知道是否有人对如何使其更好提出任何建议.
谢谢,对于这么简单的问题这么长时间的帖子,我们深表歉意!
解决方法:
您将需要多次迭代该列表,我认为这没有任何办法.毕竟,您首先必须确定不同元素的数量(第一遍),然后才能开始更改元素(第二遍).但是请注意,由于重复调用index而没有in,所以根据不同元素的数量,您可能最多可以拥有O(n ^ 2),它们在列表上具有O(n).
或者,您可以使用dict代替value_map的列表.字典的查找比列表的查找要快得多,因此,这种方式的复杂度确实应该在O(n)的数量级上.您可以使用(1)字典理解来确定旧值到新值的映射,以及(2)列表理解来创建更新的子级来执行此操作.
value_map = {el: i for i, el in enumerate(set(child))}
child2 = [value_map[el] for el in child]
或使用for循环就地更改子级.
for i, el in enumerate(child):
child[i] = value_map[el]
标签:arrays,python