分式化简结果要求_分式化简的结果有什么要求?

分式的化简与求值

分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据。

在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值。除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答。本讲主要介绍分式的化简与求值。

例1 化简分式:

分析 直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多。

=[(2a+1)-(a-3)-(3a+2)+(2a-2)]

说明 本题的关键是正确地将假分式写成整式与真分式之和的形式。

例2 求分式

当a=2时的值。

分析与解 先化简再求值。直接通分较复杂,注意到平方差公式:

a2-b2=(a+b)(a-b),

可将分式分步通分,每一步只通分左边两项。

例3 若abc=1,求

分析 本题可将分式通分后,再进行化简求值,但较复杂。下面介绍几种简单的解法。

解法1 因为abc=1,所以a,b,c都不为零。

解法2 因为abc=1,所以a≠0,b≠0,c≠0。

例4 化简分式:

分析与解 三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简。

说明

互消掉的一对相反数,这种化简的方法叫"拆项相消"法,它是分式化简中常用的技巧。

例5 化简计算(式中a,b,c两两不相等):

似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法。

说明 本例也是采取"拆项相消"法,所不同的是利用

例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求

分析 本题字母多,分式复杂。若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解。

解 令x-a=u,y-a=v,z-a=w,则分式变为

u2+v2+w2+2(uv+vw+wu)=0。

由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有

说明 从本例中可以看出,换元法可以减少字母个数,使运算过程简化。

例7 化简分式:

适当变形,化简分式后再计算求值。

(x-4)2=3,即x2-8x+13=0。

原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10

=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10

=10,

原式分母=(x2-8x+13)+2=2,

说明 本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化。

解法1 利用比例的性质解决分式问题。

(1)若a+b+c≠0,由等比定理有

所以

a+b-c=c,a-b+c=b,-a+b+c=a,

于是有

(2)若a+b+c=0,则

a+b=-c,b+c=-a,c+a=-b,

于是有

说明 比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解。

解法2 设参数法。令

a+b=(k+1)c,①

a+c=(k+1)b,②

b+c=(k+1)a。③

①+②+③有

2(a+b+c)=(k+1)(a+b+c),

所以 (a+b+c)(k-1)=0,

故有k=1或 a+b+c=0。

当k=1时,

当a+b+c=0时,

说明 引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用。

练习四

1。化简分式:

2。计算:

3。已知:

(y-z)2+(z-x)2+(x-y)2

=(x+y-2z)2+(y+z-2x)2+(z+x-2y)2,

的值。

全部

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值