两条边延长角会有什么变化_认识直线、射线和角

《认识射线、直线和角》的教学设计

教学内容:

四年级上册第77、78页例1、例2和“练一练”,练习十三第1-3题。

教学目标:

1.经历观察、操作和交流等活动,认识射线和直线,了解线段、射线、直线之间的联系和区别。认识两点间的距离,知道两点间所有连线中线段最短。

2.进一步认识角,掌握角的表示方法,角的读法,知道角的各部分名称。理解射线和角的关系。

3.渗透事物之间相互联系和变化的观点。在活动中培养学生观察、操作、比较和抽象、概括的能力。

教学重点:

掌握线段、射线、直线三者之间的联系和区别,掌握角的定义。

教学难点:

射线、角等空间概念的建立;射线、直线概念、特点的理解。

教具准备:

三角尺、课件、软黑板、教鞭。

学具准备:

尺、笔、作业纸。

课前复习:

1.线段的特点是什么?

2.复习角的各部分名称,角的大小与边的长短无关。

3.询问学习小组情况。

教学过程

一、谈话引入:

同学们,你们知道吗?最近扬州正在举行建城2500周年的纪念活动。白天的扬州热闹繁华,夜晚的扬州是那样的美轮美奂,我们一起来瞧一瞧美丽的扬州夜景!(播放灯光夜景动画,大图缩小定格在同一张ppt)你觉得她美吗?美在哪里?

生:灯光、光线

正是有了这些光线的装扮,扬州的夜空才如此的绚丽多彩!

二、认识射线。

1.感受射线

这些光线是从哪里射出的呢?

生:灯

光线是什么样子的?

生:直的,结合手势提示:比如,这些光线是这样射出去的!

光线射的远吗?

生:这些光线可以射的很远、很远……

师:只要这些灯有足够的电,它射出的光线就会不停地延伸、延伸、再延伸……它的长度是……无限的。

老师选取了其中的一条,请看:(课件:一条光线射出图)

像这样从灯射出的光线可以看作射线。(板书:射线)

2.画射线。

你能画出一条射线吗?。(生尝试画)

(展示作业纸)讨论反馈:你是怎样画的?重点(指着问):为什么要这个点?

生:这个点是灯;是端点;(师引:这个点是射线开始的地方)

下面看老师来画一条射线,师示范画射线(确定一个端点,向任意一个方向画一条直的无限延长的线)(说明:射线是无限长的,我们没有办法把它画完,这一端没有端点就表示无限长,这样画就可以了。)

对照老师画的射线,看一看自己画的射线,有什么要修改的地方吗?改一改

3.引出线段,延长线段的一端得到射线。

同学们,我们今天学习的射线其实和我们以前学过的一种线是有联系的,(画一条线段)这是?(线段)还记得线段有什么特点吗?

{page}

生:线段有两个端点,直直的,长度是有限的。

(课件出示线段)这是一条线段,看……(课件:线段延长成射线)线段有什么变化?

生1:延长了。(哪一端延长了,指一指,如果我们把它继续延长、无限延长,就得到一条……射线。另一端有变化吗?)

生2:一个端点没有了。(为什么没有了呢?因为它是无限延长的,没有尽头,这是一条……射线)

(多媒体演示,向右、向左,再旋转线段延长。适时问:是射线吗?)

揭示:把线段的一端无限延长,就得到一条射线。(课件显示定义在屏幕下方)

4.射线的特点

想一想我们刚才看到的光线的样子,回忆你画射线的过程,仔细观察这些射线,你能说说射线有哪些特点吗?

生:……

师小结:直的、只有一个端点、无限长。(课件:配合学生的回答“闪烁”

三、认识直线。

1.延长线段的两个端点得到直线。

把线段的一端无限延长,就得到一条射线。如果把线段的两端都无限延长,会得到一条……直线(课件:把线段延长成直线)(板书:直线)

(课件:改变线段摆放位置和角度,再延长成直线)这样呢?是直线吗?

揭示:把线段的两端都无限延长,就得到一条直线。(课件显示定义在屏幕下方)

2.师画直线,引导说出直线的特点(课件:只有直线)

观察这些直线,说说直线有什么特点呢?

特点:直的、没有端点、无限长

看老师画一条直线

师示范画。(一条直直的线,两端都没有端点,没有端点就可以表示无限延长。这样画就可以了。)

四、比较射线、直线、线段的特征的异同。(课件:线段、射线、直线)

1.过渡:同学们我们今天学习了射线和直线,以前还学习过线段,现在请你们仔细观察线段、射线、直线,想一想它们有什么相同之处,又有什么不同呢?在小组里讨论。(等待几秒)。

师:谁来说说他们的相同点。(课件先出现内容,最后出现“名称”“图形”和表格框线)

生:他们都是直的。

师:他们的不同点是什么呢?

预设学生说不全,可以提醒。

他们都可以量出长度吗?

师:可以从它们端点的个数,和长度来观察它们的不同点。(适时课件出示)

2.练习巩固

同学们一起比较了线段、射线和直线的相同点与不同点。

师:那大屏幕上的这道“练一练”应该难不倒大家了。(出示:“练一练”)

完成作业纸第2题

追问2、3为什么不选?

3.线段、射线、直线之间的关系(课件出示直线上两点分两次出现)

看来同学们对这3种线已经有了比较深刻的认识了,我们一起来挑战一下,好不好?

问:这是一条……(直线)

出现一个点:

现在呢?你能找到什么线?(指一指)从哪里开始,往哪个方向无限延长?还有吗?(这两条射线合在一起还是一条……直线)

{page}

出现两个点:

有什么新的发现吗?

指一指,说一说(线段要说明从哪到哪,射线要指出端点和延长方向。)

让学生充分发表自己的意见。

(配合进行课件演示)

总结:通过刚才的观察,我们发现射线、线段都是……直线的一部分。(课件出示文字)

五、两点间的距离

我发现我们四()班的同学特别爱动脑筋,能不能帮吴老师解决一个小问题

(相继出示AB两点)A点是吴老师的家,B点是学校,从我家到学校有三条路(相继出示三条路),我想用最短的时间到达学校,应该走哪条路呢?

生:直的、红的(为什么?)

师:这是一条……线段

这条线段的长度就是A、B两点间的距离。

一生读:连接两点的线段的长度叫作这两点间的距离。

我想知道这两点间的距离,量哪里?(量这条线段的长度)

四、认识角

1.前面我们已经学习了射线,现在,看吴老师来画射线!

(师画角,边画边说:我先确定一点,从这一点引出一条射线,再从这一点引出另一条射线。)

问:这是什么图形?(角,画上小弧线)

谁来说说老师刚才是怎么画的?(课件同步显示:画角、概念、各部分名称)

揭示:从一点引出的两条射线可以组成角。

复习角的各部分名称

2.(课件:延长角的两条边)如果我们把角的两条边无限延长,还是原来的角吗?(是)为什么?因为这两条边是射线,射线是无限长的。延长以后角的大小有改变吗?(没有,角还是原来的角。)

3.下面吴老师要请同学们来画角了,而且不仅画角,还要进行标记。

(课件出示一个标记完整的角)

讲解:在角的内部写上“1”,角通常用符号“∠”表示。(强调角的符号的书写课件闪烁∠)这个角可以记作∠1,读作:角一。如果还有一个角就可以记作∠2,再有就是∠3等等。

4.请一位同学读一读画角的要求(课件出示作业纸第3题:以下面每条射线为一条边,分别画一个角,并且用角的符号进行标记。)

生:完成作业纸第3题,

展示交流:规范画角,完整标记

五、巩固练习

过渡,揭题:回忆一下,这节课我们学习了那些新的知识?

认识射线、直线和角(板书)

你对这些新朋友够了解吗?我们来“选一选”

1.选一选

(1)射线有(   )个端点。

A.2      B.1

C.0

(2)角的两边是()。

A.直线B.线段C.射线

(3)下列说法不正确的是()。

A.射线是直线的一部分。

B.线段是直线的一部分。

C.直线是无限长的。

D.直线的长度大于射线的长度。

(过渡:完成的很轻松吗,继续)

{page}

2.(课件出示添射线数角)问:几条射线,几个角?

3条射线时指一指哪两条射线组成了哪个角。引出:从一点引出的任意两条射线都可以组成角。(引导有序、分类数角,添至4条射线结束。)

如果从这一点画出更多的射线,角的个数会有怎样的变化呢?课后同学们可以继续研究。

3.画一画,数一数。

(过渡:今天我们学习了射线和直线,想不想来一个画线比赛?好,听清楚要求)

(1)过一点画直线

作业纸第4题,先自己点一个点,(画好了吗?尺子准备好!)等我喊开始,你就过这一点画直线,10秒钟,看谁画的最多!(预备,开始……停)

你画了几条?你呢?有更多的吗?还有更多的吗?如果给你足够的时间,你能画多少条呢?画的完吗?

揭示:看来,(课件动态显示)过一点可以画出无数条直线。

(2)过两点画直线

比赛继续!请你任意点出两点,(点好了吗?)同时经过这两点,画直线,开始!……我还没喊停呢,你们怎么不画了?……(画完了,只有一条)看来,经过两点只能画出……(课件显示)一条直线。

(3)过三点中的两点画直线。

还想继续比赛吗?(……)任意点出三点,(点好了吗?)经过其中两点画出一条直线,最多能画几条呢?开始!

反馈交流:你画了几条?(3条)有不同情况吗?(有,这是一种特殊情况,我们以后再来研究;没有,都是这样的吗?)(课件显示)

这里有几条直线?(3条)有几条线段?(3条)我想知道这两点(指示)之间的距离,我应该量哪里?(量这条线段的长度)

很好,你们能数出有多少条射线吗?

几条?(3、4生说)你说有12条呢,你来数给大家看一看。(引导从每个端点数。

这幅图里不仅有直线、线段、射线,还有……角,有多少个角呢?留给同学们课后去研究。

六、课堂总结

同学们今天学的非常认真,一定有很多的收获,说一说你这节课有哪些收获!(视时间追问)

{page}

射线与平面三形相交的算法通常涉及向量几何和点到直线的距离计算。以下是一个基本的步骤概述: 1. **设置场景**:首先,你需要定义射线的方向向量 `ray_direction` 和起点 `ray_origin`,以及三形的三个顶点 `triangle_vertices`。 2. **计算边和法向量**:对于每个三形边 `(v1, v2)`,计算其对应的边向量 `edge1 = v2 - v1` 和法向量 `normal1 = crossProduct(edge1, up_vector)`(假设有一个固定的 `up_vector` 来确定垂直方向,例如 (0, 1, 0))。 3. **循环检查每个边**:对每条边,计算该边的延长线(即射线),然后找到这条边的两个端点和射线的交点。如果射线方向与边平行或射线起始点在边之外,则无交点。 4. **点到面距离**:对于找到的潜在交点,计算它与三形所在平面的距离。这通常是通过将交点投影到法向量上并除以法向量的长度得到的。 5. **判断交点是否在三形内**:如果交点距离小于三形任意一边的长度加上两边之间的间隙(防止精度误差造成的假相交),那么就认为这个点确实位于三形内部。 6. **处理特殊情况**:考虑射线从三形外穿过的情况,这时可能会有两个交点,需要选择合适的。 下面是一个伪代码示例(使用Python表示): ```python def ray_triangle_intersection(ray_dir, ray_start, triangle): # ... (步骤1-3) intersections = [] for edge1, normal1 in zip(edges, normals): intersection = intersect_ray_triangle(ray_dir, ray_start, edge1, normal1) if intersection is not None: intersections.append(intersection) # ... (步骤4-6) return intersections # 用于计算射线线段的交点函数 def intersect_ray_triangle(ray_dir, ray_start, edge1, normal1): t1, t2 = edge1.dot(normal1), -normal1.dot(ray_start) if t1 < 0 or (t1 >= 0 and t2 <= 0): return None u = ray_dir.dot(normal1) / t1 if u < 0 or (u >= 0 and t2 < 0): return None closest_point_on_edge = edge1 * u + ray_start distance_to_plane = closest_point_on_edge.dot(normal1) # ... (处理特殊情况) return closest_point_on_edge if distance_to_plane > 0 else None ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值