信号与系统sa函数求积分_信号与系统

本文介绍了信号与系统的概念,包括信号的描述、分类和运算,以及系统的模型和分类。重点讲解了时域分析中的微分方程求解、冲激响应、阶跃响应和卷积的计算。此外,还讨论了傅里叶变换在频域分析中的应用,以及拉普拉斯变换的优势和系统函数的求解,强调了拉氏变换在简化计算和分析系统特性上的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[TOC]

一、信号与系统概论

1. 信号与系统的研究内容是什么

2. 信号如何描述、分类和运算

描述

函数表达式

图形描述

分类

模拟/数字

周期/非周期

功率/能量

确定/随机

运算

自变量

因变量

自变量+因变量

3. 信号如何分解,有何意义

4. 如何建立系统模型,如何分类

5. 什么是线性时不变系统,有何意义

二、信号与系统的时域分析

1. 如何建立系统数学模型(微分方程,差分方程)

在电学中一般是根据KVL,KCL以及电感电流和电容电压不突变,来建立微分方程,差分方程一般是由系统框图得来的。

2. 如何求解微分方程或差分方程

求特征根

求齐次解(包含待定系数,由初始条件求得)

求特解

3. 如何求解跳变量(从

的跳变量)

物理条件约束

电感电流和电容电压不能跳变

冲激函数匹配法

4. 解释什么是零输入响应,什么是零状态响应,与强迫响应与自由响应有什么关系

5. 什么是冲激响应,什么是阶跃响应,有什么意义

6. 如何理解卷积,如何计算卷积,列举几条卷积常用的性质

卷积方法的原理是将信号分解为冲激信号之和,利用系统的冲激响应与卷积的性质(线性)求解系统对任意激励信号的零状态响应。计算卷积可以直接积分,也可以使用图解法,在离散序列卷积和的计算中还可以列表格与矩阵计算。

三、傅里叶变换和离散傅里叶变换(频域)

1. 周期信号如何分解,分解表示形式有哪些,其频谱有什么特点

三角形式:单边谱

指数形式:双边谱,幅度一半,相位谱奇对称

2. 说一说傅里叶变换的性质,意义

3. 周期信号如何傅里叶变换

主要是利用频移特性,引入冲激函数,对于一般的周期序列来说,其傅里叶变换是其主值序列的傅里叶变换在频域的周期延拓

4. 抽样信号的傅里叶变换是怎样的

由冲激信号抽样得到的频谱是原信号频谱的周期延拓

有矩形脉冲抽样得到的频谱是原信号频谱的周期延拓,但包络是Sa函数

5. 简述时域抽样定理

6.

四、拉普拉斯变换及s域分析

1. 为什么需要拉氏变换,其相对于傅氏变换有什么优点

拉氏变换可以将“微分”与“积分”运算变换为“乘法”与“除法”运算,这大大简化了计算量

拉氏变换可以把卷积运算转换为乘积运算

拉氏变换可以得到连续系统的系统函数,通过分析系统函数的零极点可以得到系统的特性

拉氏变换引入了衰减因子,使变换应用范围相较于傅里叶变换变大了,原函数乘以衰减因子的极限为0即可对其进行拉氏变换

2. 说几条拉氏变换的常用性质

3. 拉氏逆变换

部分分式分解法

留数定理

4. 如何求解系统函数

冲激响应变换得来

系统的零状态响应的L变换与激励信号L变换之比

5. 试通过系统函数的零极点(一阶极点)分析其原函数波形

极点包含虚部则原函数波形是振荡的

极点位于左半平面则原函数波形总体是衰减的

极点位于右半平面则原函数波形总体是递增的

极点位于中间(虚轴上)则原函数波形是平的

零点不影响波形的形式,只影响波形的幅度和相位

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值