【信号与系统 - 7】系统的频域分析

1 频域分析法求解零状态响应

1-1 推导

  • 已知线性时不变系统的单位冲激响应为 h ( t ) h(t) h(t),求系统对基本信号 f ( t ) = e j w t f(t)=e^{jwt} f(t)=ejwt 的零状态响应

y f ( t ) = e j w t ∗ h ( t ) = ∫ − ∞ + ∞ h ( τ ) e j w ( t − τ ) d τ = e j w t ∫ − ∞ + ∞ e − j w τ h ( τ ) d τ y_f(t)=e^{jwt}*h(t)=\int_{-\infty}^{+\infty}h(\tau)e^{jw(t-\tau)}d\tau=e^{jwt}\int_{-\infty}^{+\infty}e^{-jw\tau}h(\tau)d\tau yf(t)=ejwth(t)=+h(τ)ejw(tτ)dτ=ejwt+ejwτh(τ)dτ

根据傅里叶变换公式 F ( j w ) = ∫ − ∞ + ∞ e − j w t f ( t ) d t F(jw)=\int^{+\infty}_{-\infty}e^{-jwt}f(t)dt F(jw)=+ejwtf(t)dt,进行变量替换:将 τ \tau τ 替换掉原来的 t t t,即 F ( j w ) = ∫ − ∞ + ∞ e − j w τ f ( τ ) d τ F(jw)=\int^{+\infty}_{-\infty}e^{-jw\tau}f(\tau)d\tau F(jw)=+ejwτf(τ)dτ,则:

y f ( t ) = e j w t H ( j w ) y_f(t)=e^{jwt}H(jw) yf(t)=ejwtH(jw)


例、 f ( t ) = e j t , H ( j w ) = − 2 j w f(t)=e^{jt},H(jw)=-2jw f(t)=ejt,H(jw)=2jw
首先易知: w = 1 w=1 w=1,则 H ( j ) = − 2 j H(j)=-2j H(j)=2j,可得:

y f ( t ) = e j t ⋅ ( − 2 j ) = − 2 j ( c o s t + j s i n t ) = − 2 j c o s t + 2 s i n t y_f(t)=e^{jt}\cdot(-2j)=-2j(cost+jsint)=-2jcost+2sint yf(t)=ejt(2j)=2j(cost+jsint)=2jcost+2sint


  • 依赖上面得到 f ( t ) = e j w t f(t)=e^{jwt} f(t)=ejwt 的零状态响应为 : y f ( t ) = e j w t H ( j w ) y_f(t)=e^{jwt}H(jw) yf(t)=ejwtH(jw),可以延拓到一般信号上 F ( j w ) 2 π e j w t d w \frac{F(jw)}{2\pi}e^{jwt}dw 2πF(jw)ejwtdw

根据线性系统的齐次性:

F ( j w ) 2 π e j w t d w ↔ F ( j w ) 2 π e j w t ⋅ H ( j w ) d w \frac{F(jw)}{2\pi}e^{jwt}dw\leftrightarrow\frac{F(jw)}{2\pi}e^{jwt}\cdot H(jw)dw 2πF(jw)ejwtdw2πF(jw)ejwtH(jw)dw

进一步根据线性系统的可加性:
(注:积分 ∫ \int 就是对连续函数的叠加,而求和 ∑ \sum 则是对离散函数的叠加)

∫ − ∞ + ∞ F ( j w ) 2 π e j w t d w ↔ ∫ − ∞ + ∞ F ( j w ) 2 π e j w t ⋅ H ( j w ) d w = 1 2 π ∫ − ∞ + ∞ [ F ( j w ) H ( j w ) ] ⋅ e j w t d w \int_{-\infty}^{+\infty}\frac{F(jw)}{2\pi}e^{jwt}dw\leftrightarrow\int_{-\infty}^{+\infty}\frac{F(jw)}{2\pi}e^{jwt}\cdot H(jw)dw=\frac{1}{2\pi}\int_{-\infty}^{+\infty}[F(jw)H(jw)]\cdot e^{jwt}dw +2πF(jw)ejwtdw+2πF(jw)ejwtH(jw)dw=2π1+[F(jw)H(jw)]ejwtdw

根据傅里叶反变换公式 f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( j w ) e j w t d w f(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(jw)e^{jwt}dw f(t)=2π1+F(jw)ejwtdw,则:

f ( t ) ↔ y f ( t ) = F − 1 [ F ( j w ) H ( j w ) ] f(t)\leftrightarrow y_f(t)=F^{-1}[F(jw)H(jw)] f(t)yf(t)=F1[F(jw)H(jw)]

1-2 频域分析法求解步骤

根据上面的结论 y f ( t ) = F − 1 [ F ( j w ) H ( j w ) ] y_f(t)=F^{-1}[F(jw)H(jw)] yf(t)=F1[F(jw)H(jw)] ,首先需要求解到 F ( j w ) F(jw) F(jw) H ( j w ) H(jw) H(jw)

①求输入信号与冲激响应的 F T 变换 FT变换 FT变换 f ( t ) ↔ F ( j w ) f(t)\leftrightarrow F(jw) f(t)F(jw) h ( t ) ↔ H ( j w ) h(t)\leftrightarrow H(jw) h(t)H(jw)

②求零状态响应 y f ( t ) y_f(t) yf(t) F T 变换 FT变换 FT变换 y f ( t ) ↔ Y ( j w ) = F ( j w ) ⋅ H ( j w ) y_f(t)\leftrightarrow Y(jw)=F(jw)\cdot H(jw) yf(t)Y(jw)=F(jw)H(jw)

③对 Y ( j w ) Y(jw) Y(jw) 进行傅里叶反变换: y f ( t ) = F − 1 [ F ( j w ) H ( j w ) ] y_f(t)=F^{-1}[F(jw)H(jw)] yf(t)=F1[F(jw)H(jw)]

1-3 频域分析法总结

这个方法实际利用的就是傅里叶变换性质中的时域积分性质:

f 1 ( t ) ∗ f 2 ( t ) ↔ F 1 ( j w ) ⋅ F 2 ( j w ) f_1(t)*f_2(t)\leftrightarrow F_1(jw)\cdot F_2(jw) f1(t)f2(t)F1(jw)F2(jw)

在这里插入图片描述

2 系统函数的定义

  • 已知一个线性时不变连续时间系统的数学模型常用常系数线性微分方程描述:
    注: k k k 是求导阶数,左式为输出,右式为输入

∑ k = 0 n a k ⋅ y ( k ) ( t ) = ∑ k = 0 m b k ⋅ f ( k ) ( t ) \sum_{k=0}^{n}a_k\cdot y^{(k)}(t)=\sum_{k=0}^{m}b_k\cdot f^{(k)}(t) k=0naky(k)(t)=k=0mbkf(k)(t)

两边同时进行 F T 变换 FT变换 FT变换

F T [ ∑ k = 0 n a k ⋅ y ( k ) ( t ) ] = F T [ ∑ k = 0 m b k ⋅ f ( k ) ( t ) ] FT\Big[\sum_{k=0}^{n}a_k\cdot y^{(k)}(t)\Big]=FT\Big[\sum_{k=0}^{m}b_k\cdot f^{(k)}(t)\Big] FT[k=0naky(k)(t)]=FT[k=0mbkf(k)(t)]
∑ k = 0 n a k ⋅ F T [ y ( k ) ( t ) ] = ∑ k = 0 m b k ⋅ F T [ f ( k ) ( t ) ] \sum_{k=0}^{n}a_k\cdot FT\Big[ y^{(k)}(t)\Big]=\sum_{k=0}^{m}b_k\cdot FT\Big[f^{(k)}(t)\Big] k=0nakFT[y(k)(t)]=k=0mbkFT[f(k)(t)]

根据时域的微分性质:

∑ k = 0 n a k ⋅ ( j w ) k ⋅ Y ( j w ) = ∑ k = 0 m b k ⋅ ( j w ) k ⋅ F ( j w ) \sum_{k=0}^{n}a_k\cdot (jw)^k\cdot Y(jw)=\sum_{k=0}^{m}b_k\cdot(jw)^k\cdot F(jw) k=0nak(jw)kY(jw)=k=0mbk(jw)kF(jw)

系统函数定义为:

H ( j w ) = Y ( j w ) F ( j w ) = ∑ k = 0 n b k ⋅ ( j w ) k ∑ k = 0 m a k ⋅ ( j w ) k H(jw)=\frac{Y(jw)}{F(jw)}=\frac{\sum_{k=0}^{n}b_k\cdot (jw)^k}{\sum_{k=0}^{m}a_k\cdot(jw)^k} H(jw)=F(jw)Y(jw)=k=0mak(jw)kk=0nbk(jw)k


  • 感抗与容抗


对电容 C C C i C = C d u C d t i_C=C\frac{du_C}{dt} iC=CdtduC 【电容电流是其电压对时间的微分】
对电感 L L L u L = L d i L d t u_L=L\frac{di_L}{dt} uL=LdtdiL 【电感电压是其电流对时间的微分】

在这里插入图片描述

i S = i C + i 0 i_S=i_C+i_0 iS=iC+i0 u C = u R + u L = i 0 R + L d i 0 d t u_C=u_R+u_L=i_0R+L\frac{di_0}{dt} uC=uR+uL=i0R+Ldtdi0
d u C d t = R d d t i 0 + L d 2 d t 2 i 0 \frac{du_C}{dt}=R\frac{d}{dt}i_0+L\frac{d^2}{dt^2}i_0 dtduC=Rdtdi0+Ldt2d2i0
C d u C d t = R C d d t i 0 + L C d 2 d t 2 i 0 C\frac{du_C}{dt}=RC\frac{d}{dt}i_0+LC\frac{d^2}{dt^2}i_0 CdtduC=RCdtdi0+LCdt2d2i0
i C = R C ⋅ i 0 ′ + L C ⋅ i 0 ′ ′ i_C=RC\cdot i_0'+LC\cdot i_0'' iC=RCi0+LCi0′′
i S = i C + i 0 = i 0 + R C ⋅ i 0 ′ + L C ⋅ i 0 ′ ′ i_S=i_C+i_0=i_0+RC\cdot i_0'+LC\cdot i_0'' iS=iC+i0=i0+RCi0+LCi0′′


例、求单位阶跃信号通过RC高通网络传输后的波形
u S ( t ) u_S(t) uS(t) 为输入信号, u O ( t ) u_O(t) uO(t) 为输出信号

在这里插入图片描述

{ U S ( j w ) = F ( j w ) = U C ( j w ) + U R ( j w ) U O ( j w ) = Y ( j w ) = U R ( j w ) \begin{cases} U_S(jw)=F(jw)=U_C(jw)+U_R(jw)\\ U_O(jw)=Y(jw)=U_R(jw) \end{cases} {US(jw)=F(jw)=UC(jw)+UR(jw)UO(jw)=Y(jw)=UR(jw)
H ( j w ) = Y ( j w ) F ( j w ) = U R ( j w ) U C ( j w ) + U R ( j w ) = R 1 j w C + R = j w C R 1 + j w C R H(jw)=\frac{Y(jw)}{F(jw)}=\frac{U_R(jw)}{U_C(jw)+U_R(jw)}=\frac{R}{\frac{1}{jwC}+R}=\frac{jwCR}{1+jwCR} H(jw)=F(jw)Y(jw)=UC(jw)+UR(jw)UR(jw)=jwC1+RR=1+jwCRjwCR

输入信号 u S ( t ) = u ( t ) u_S(t)=u(t) uS(t)=u(t)

u S ( t ) = u ( t ) ↔ U S ( t ) = π δ ( w ) + 1 j w u_S(t)=u(t)\leftrightarrow U_S(t)=\pi \delta(w)+\frac{1}{jw} uS(t)=u(t)US(t)=πδ(w)+jw1

H ( j w ) = Y ( j w ) F ( j w ) H(jw)=\frac{Y(jw)}{F(jw)} H(jw)=F(jw)Y(jw)

U O ( j w ) = Y ( j w ) = F ( j w ) ⋅ H ( j w ) = [ π δ ( w ) + 1 j w ] ⋅ j w C R 1 + j w C R U_O(jw)=Y(jw)=F(jw)\cdot H(jw)=\Big[\pi \delta(w)+\frac{1}{jw}\Big]\cdot \frac{jwCR}{1+jwCR} UO(jw)=Y(jw)=F(jw)H(jw)=[πδ(w)+jw1]1+jwCRjwCR

根据采样性质: π δ ( w ) ⋅ j w C R 1 + j w C R = 0 \pi\delta(w)\cdot \frac{jwCR}{1+jwCR}=0 πδ(w)1+jwCRjwCR=0,则:

U O ( j w ) = R C 1 + j w R C U_O(jw)=\frac{RC}{1+jwRC} UO(jw)=1+jwRCRC

U O ( j w ) U_O(jw) UO(jw) 求傅里叶反变换得到 u O ( t ) u_O(t) uO(t)

u O ( t ) = F − 1 [ R C 1 + j w R C ] = F − 1 [ 1 1 R C + j w ] u_O(t)=F^{-1}\Big[\frac{RC}{1+jwRC}\Big]=F^{-1}\Big[\frac{1}{\frac{1}{RC}+jw}\Big] uO(t)=F1[1+jwRCRC]=F1[RC1+jw1]

a = 1 R C a=\frac{1}{RC} a=RC1,且 e − a t u ( t ) ↔ 1 a + j w e^{-at}u(t)\leftrightarrow\frac{1}{a+jw} eatu(t)a+jw1,则:

u O ( t ) = e − 1 R C t u ( t ) u_O(t)=e^{-\frac{1}{RC}t}u(t) uO(t)=eRC1tu(t)


例2
在这里插入图片描述

①求 f ( t ) f(t) f(t) 的频谱 F ( j w ) F(jw) F(jw)
s i n ( 2 t ) t = 2 S a ( 2 t ) \frac{sin(2t)}{t}=2Sa(2t) tsin(2t)=2Sa(2t)
g τ ( t ) ↔ τ S a ( w τ 2 ) g_\tau(t)\leftrightarrow \tau Sa(\frac{w\tau}{2}) gτ(t)τSa(2wτ)
τ S a ( τ 2 t ) ↔ 2 π g τ ( w ) \tau Sa(\frac{\tau}{2}t)\leftrightarrow 2\pi g_\tau(w) τSa(2τt)2πgτ(w)
S a ( τ 2 t ) ↔ 2 π τ g τ ( w ) Sa(\frac{\tau}{2}t)\leftrightarrow \frac{2\pi}{\tau } g_\tau(w) Sa(2τt)τ2πgτ(w)

其中 τ 2 = 2 \frac{\tau}{2}=2 2τ=2,则 τ = 4 \tau=4 τ=4

S a ( 2 t ) ↔ 2 π 4 g 4 ( w ) = π 2 g 4 ( w ) Sa(2t)\leftrightarrow \frac{2\pi}{4} g_4(w)=\frac{\pi}{2} g_4(w) Sa(2t)42πg4(w)=2πg4(w)
s i n ( 2 t ) t ↔ π g 4 ( w ) \frac{sin(2t)}{t}\leftrightarrow \pi g_4(w) tsin(2t)πg4(w)
s i n ( 2 t ) t c o s ( 2000 π t ) = s i n ( 2 t ) t ( e j 2000 π t + e − j 2000 π t ) 2 \frac{sin(2t)}{t}cos(2000\pi t)=\frac{sin(2t)}{t}\frac{(e^{j2000\pi t}+e^{-j2000\pi t})}{2} tsin(2t)cos(2000πt)=tsin(2t)2(ej2000πt+ej2000πt)
s i n ( 2 t ) t c o s ( 2000 π t ) ↔ π 2 [ g 4 ( w − 2000 π ) + g 4 ( w + 2000 π ) ] \frac{sin(2t)}{t}cos(2000\pi t)\leftrightarrow \frac{\pi}{2}[g_4(w-2000\pi)+g_4(w+2000\pi)] tsin(2t)cos(2000πt)2π[g4(w2000π)+g4(w+2000π)]

②求 s ( t ) s(t) s(t) 的频谱 S ( j w ) S(jw) S(jw)
s ( t ) = ∑ m = − ∞ m = + ∞ g T 2 ( w − m T ) s(t)=\sum_{m=-\infty}^{m=+\infty}g_{\frac{T}{2}}(w-mT) s(t)=m=m=+g2T(wmT) Ω = 2 π T = 2000 π \Omega=\frac{2\pi}{T}=2000\pi Ω=T2π=2000π

S ( j w ) = 2 π ∑ n = − ∞ + ∞ F n δ ( w − n Ω ) S(jw)=2\pi\sum_{n=-\infty}^{+\infty}F_n\delta(w-n\Omega) S(jw)=2πn=+Fnδ(wnΩ)

根据上一篇的结论 f T ( t ) = ∑ m = − ∞ + ∞ g τ ( t − m T ) f_T(t)=\sum_{m=-\infty}^{+\infty}g_\tau(t-mT) fT(t)=m=+gτ(tmT) 对应 F n = τ T S a ( n w 0 τ 2 ) F_n=\frac{\tau}{T}Sa(\frac{nw_0\tau}{2}) Fn=TτSa(2nw0τ),这里 τ = T 2 = 1 2000 \tau=\frac{T}{2}=\frac{1}{2000} τ=2T=20001,则:

F n = 1 2000 1 1000 S a ( n 2000 π 1 2000 2 ) = 1 2 S a ( n π 2 ) F_n=\frac{\frac{1}{2000}}{\frac{1}{1000}}Sa(\frac{n2000\pi\frac{1}{2000}}{2})=\frac{1}{2}Sa(\frac{n\pi}{2}) Fn=1000120001Sa(2n2000π20001)=21Sa(2)
S ( j w ) = π ∑ n = − ∞ + ∞ S a ( n π 2 ) δ ( w − n Ω ) S(jw)=\pi\sum_{n=-\infty}^{+\infty}Sa(\frac{n\pi}{2})\delta(w-n\Omega) S(jw)=πn=+Sa(2)δ(wnΩ)

由于 S a ( n π 2 ) = s i n ( n π 2 ) n π 2 Sa(\frac{n\pi}{2})=\frac{sin(\frac{n\pi}{2})}{\frac{n\pi}{2}} Sa(2)=2sin(2) n = 2 k , k 是整数 n=2k,k是整数 n=2k,k是整数 时(即 n n n 为偶数), S a ( n π 2 ) = 0 Sa(\frac{n\pi}{2})=0 Sa(2)=0,则计算时仅用考虑 n = 2 k + 1 n=2k+1 n=2k+1 即为奇数时的情况, s i n ( n π 2 ) = ± 1 sin(\frac{n\pi}{2})=\pm 1 sin(2)=±1 (其中 k k k 为偶数取正,为奇数取负),则:

S ( j w ) = ∑ k = − ∞ + ∞ ± 2 ( 2 k + 1 ) δ [ w − ( 2 k + 1 ) Ω ] S(jw)=\sum_{k=-\infty}^{+\infty}\pm\frac{2}{(2k+1)}\delta[w-(2k+1)\Omega] S(jw)=k=+±(2k+1)2δ[w(2k+1)Ω]

其中 k = 0 k=0 k=0 k = − 1 k=-1 k=1 时无法互相抵消,则:

S ( j w ) = 2 δ ( w − Ω ) + 2 δ ( w + Ω ) S(jw)=2\delta(w-\Omega)+2\delta(w+\Omega) S(jw)=2δ(wΩ)+2δ(w+Ω)

③根据频域卷积性质 : x ( t ) = f ( t ) ⋅ s ( t ) ↔ X ( j w ) = 1 2 π F ( j w ) ∗ S ( j w ) x(t)=f(t)\cdot s(t)\leftrightarrow X(jw)=\frac{1}{2\pi}F(jw)*S(jw) x(t)=f(t)s(t)X(jw)=2π1F(jw)S(jw)

X ( j w ) = 1 2 π { π 2 [ g 4 ( w − Ω ) + g 4 ( w + Ω ) ] ∗ 2 δ ( w − Ω ) + 2 δ ( w + Ω ) } X(jw)=\frac{1}{2\pi}\bigg\{\frac{\pi}{2}[g_4(w-\Omega)+g_4(w+\Omega)]*2\delta(w-\Omega)+2\delta(w+\Omega)\bigg\} X(jw)=2π1{2π[g4(wΩ)+g4(w+Ω)]2δ(wΩ)+2δ(w+Ω)}
X ( j w ) = 1 2 { [ g 4 ( w − Ω ) + g 4 ( w + Ω ) ] ∗ δ ( w − Ω ) + δ ( w + Ω ) } X(jw)=\frac{1}{2}\bigg\{[g_4(w-\Omega)+g_4(w+\Omega)]*\delta(w-\Omega)+\delta(w+\Omega)\bigg\} X(jw)=21{[g4(wΩ)+g4(w+Ω)]δ(wΩ)+δ(w+Ω)}

根据上一篇证明得到的结论 f ( t ) ∗ δ ( t ) = f ( t ) f(t)*\delta(t)=f(t) f(t)δ(t)=f(t) ,替换到频域上:

X ( j w ) = 1 2 { g 4 ( w − Ω − Ω ) + g 4 ( w − Ω + Ω ) + g 4 ( w + Ω − Ω ) + g 4 ( w + Ω + Ω ) } X(jw)=\frac{1}{2}\bigg\{g_4(w-\Omega-\Omega)+g_4(w-\Omega+\Omega)+g_4(w+\Omega-\Omega)+g_4(w+\Omega+\Omega)\bigg\} X(jw)=21{g4(wΩΩ)+g4(wΩ+Ω)+g4(w+ΩΩ)+g4(w+Ω+Ω)}
X ( j w ) = 1 2 { g 4 ( w − 2 Ω ) + g 4 ( w ) + g 4 ( w ) + g 4 ( w + 2 Ω ) } X(jw)=\frac{1}{2}\bigg\{g_4(w-2\Omega)+g_4(w)+g_4(w)+g_4(w+2\Omega)\bigg\} X(jw)=21{g4(w)+g4(w)+g4(w)+g4(w+)}
X ( j w ) = 1 2 [ g 4 ( w − 2 Ω ) + g 4 ( w + 2 Ω ) ] + g 4 ( w ) X(jw)=\frac{1}{2}\Big[g_4(w-2\Omega)+g_4(w+2\Omega)\Big]+g_4(w) X(jw)=21[g4(w)+g4(w+)]+g4(w)

y ( t ) y(t) y(t) x ( t ) x(t) x(t) 经过 H ( j w ) H(jw) H(jw) 这个低通滤波器得到,所以只需要 X ( j w ) X(jw) X(jw) w ∈ ( − 1 , 1 ) w\in (-1,1) w(1,1) 区间 X ( j w ) = g 2 ( w ) X(jw)=g_2(w) X(jw)=g2(w),则:

Y ( j w ) = X ( j w ) ⋅ H ( j w ) = g 2 ( w ) e − j 2 w Y(jw)=X(jw)\cdot H(jw)=g_2(w)e^{-j2w} Y(jw)=X(jw)H(jw)=g2(w)ej2w

⑤将 Y ( j w ) Y(jw) Y(jw) 傅里叶反变换

{ g 2 ( t ) ↔ 2 S a ( w ) 2 S a ( t ) ↔ 2 π g 2 ( w ) \begin{cases} g_2(t)\leftrightarrow 2Sa(w)\\ 2Sa(t)\leftrightarrow 2\pi g_2(w)\\ \end{cases} {g2(t)2Sa(w)2Sa(t)2πg2(w)

则: 1 π S a ( t ) ↔ g 2 ( w ) \frac{1}{\pi}Sa(t)\leftrightarrow g_2(w) π1Sa(t)g2(w)
根据时移性:

{ g 2 ( t ) e − j 2 w ↔ 2 S a ( w − 2 ) 2 S a ( t − 2 ) ↔ 2 π g 2 ( w ) e − j 2 w \begin{cases} g_2(t)e^{-j2w}\leftrightarrow 2Sa(w-2)\\ 2Sa(t-2)\leftrightarrow 2\pi g_2(w)e^{-j2w}\\ \end{cases} {g2(t)ej2w2Sa(w2)2Sa(t2)2πg2(w)ej2w

则: 1 π S a ( t − 2 ) ↔ g 2 ( w ) e − j 2 w \frac{1}{\pi}Sa(t-2)\leftrightarrow g_2(w)e^{-j2w} π1Sa(t2)g2(w)ej2w

  • 25
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值