父爱动画代码python_matplotlib绘制动画代码示例

matplotlib从1.1.0版本以后就开始支持绘制动画

下面是几个的示例:

第一个例子使用generator,每隔两秒,就运行函数data_gen:

# -*- coding: utf-8 -*-

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.animation as animation

fig = plt.figure()

axes1 = fig.add_subplot(111)

line, = axes1.plot(np.random.rand(10))

#因为update的参数是调用函数data_gen,所以第一个默认参数不能是framenum

def update(data):

line.set_ydata(data)

return line,

# 每次生成10个随机数据

def data_gen():

while True:

yield np.random.rand(10)

ani = animation.FuncAnimation(fig, update, data_gen, interval=2*1000)

plt.show()

第二个例子使用list(metric),每次从metric中取一行数据作为参数送入update中:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.animation as animation

start = [1, 0.18, 0.63, 0.29, 0.03, 0.24, 0.86, 0.07, 0.58, 0]

metric =[[0.03, 0.86, 0.65, 0.34, 0.34, 0.02, 0.22, 0.74, 0.66, 0.65],

[0.43, 0.18, 0.63, 0.29, 0.03, 0.24, 0.86, 0.07, 0.58, 0.55],

[0.66, 0.75, 0.01, 0.94, 0.72, 0.77, 0.20, 0.66, 0.81, 0.52]

]

fig = plt.figure()

window = fig.add_subplot(111)

line, = window.plot(start)

#如果是参数是list,则默认每次取list中的一个元素,即metric[0],metric[1],...

def update(data):

line.set_ydata(data)

return line,

ani = animation.FuncAnimation(fig, update, metric, interval=2*1000)

plt.show()

第三个例子:

import numpy as np

from matplotlib import pyplot as plt

from matplotlib import animation

# First set up the figure, the axis, and the plot element we want to animate

fig = plt.figure()

ax = plt.axes(xlim=(0, 2), ylim=(-2, 2))

line, = ax.plot([], [], lw=2)

# initialization function: plot the background of each frame

def init():

line.set_data([], [])

return line,

# animation function. This is called sequentially

# note: i is framenumber

def animate(i):

x = np.linspace(0, 2, 1000)

y = np.sin(2 * np.pi * (x - 0.01 * i))

line.set_data(x, y)

return line,

# call the animator. blit=True means only re-draw the parts that have changed.

anim = animation.FuncAnimation(fig, animate, init_func=init,

frames=200, interval=20, blit=True)

#anim.save('basic_animation.mp4', fps=30, extra_args=['-vcodec', 'libx264'])

plt.show()

第四个例子:

# -*- coding: utf-8 -*-

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.animation as animation

# 每次产生一个新的坐标点

def data_gen():

t = data_gen.t

cnt = 0

while cnt < 1000:

cnt+=1

t += 0.05

yield t, np.sin(2*np.pi*t) * np.exp(-t/10.)

data_gen.t = 0

# 绘图

fig, ax = plt.subplots()

line, = ax.plot([], [], lw=2)

ax.set_ylim(-1.1, 1.1)

ax.set_xlim(0, 5)

ax.grid()

xdata, ydata = [], []

# 因为run的参数是调用函数data_gen,所以第一个参数可以不是framenum:设置line的数据,返回line

def run(data):

# update the data

t,y = data

xdata.append(t)

ydata.append(y)

xmin, xmax = ax.get_xlim()

if t >= xmax:

ax.set_xlim(xmin, 2*xmax)

ax.figure.canvas.draw()

line.set_data(xdata, ydata)

return line,

# 每隔10秒调用函数run,run的参数为函数data_gen,

# 表示图形只更新需要绘制的元素

ani = animation.FuncAnimation(fig, run, data_gen, blit=True, interval=10,

repeat=False)

plt.show()

再看下面的例子:

# -*- coding: utf-8 -*-

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.animation as animation

#第一个参数必须为framenum

def update_line(num, data, line):

line.set_data(data[...,:num])

return line,

fig1 = plt.figure()

data = np.random.rand(2, 15)

l, = plt.plot([], [], 'r-')

plt.xlim(0, 1)

plt.ylim(0, 1)

plt.xlabel('x')

plt.title('test')

#framenum从1增加大25后,返回再次从1增加到25,再返回...

line_ani = animation.FuncAnimation(fig1, update_line, 25,fargs=(data, l),interval=50, blit=True)

#等同于

#line_ani = animation.FuncAnimation(fig1, update_line, frames=25,fargs=(data, l),

# interval=50, blit=True)

#忽略frames参数,framenum会从1一直增加下去知道无穷

#由于frame达到25以后,数据不再改变,所以你会发现到达25以后图形不再变化了

#line_ani = animation.FuncAnimation(fig1, update_line, fargs=(data, l),

# interval=50, blit=True)

plt.show()

总结

以上就是本文关于matplotlib绘制动画代码示例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值