使用函数求素数和_素数定理(1) 如何对任意数考虑阶乘?

     打算稍微从个人笔记中取材,用几次文章记录素数分布定理(Prime Number Theorem)有关的内容和复分析方法的证明,总的来说这是一个精巧但仍然包含深度的证法,一个较为完整的证明过程可以见Stein第二本的chapter6,7与课后习题,接下来的叙述逻辑也大致与此类同.有关于素数定理的复分析证明,不需要十分高深的理论,但充分地理解仍然需要有各种分析的基础知识才行.

       事实上,素数分布定理的相关内容中,许多特殊函数以及它们在复平面上的性质都是十分有趣味性的,它们许多时候都体现了从整数到一般情况的思维拓展,所以先不直接讨论问题,而是先从引入Γ函数与阶乘n!的关系说起.

       为了表示排列数,我们熟知阶乘的表示法n!=1*2*…*n,例如十个人排队拍照的不同情况有10!=3628800种.这样的定义浅显易懂,但显然在数学理论里这个东西不容易添加更多的价值.对学习者来说,一个直接的疑问是如何考虑有理数,例如1/2的阶乘,这显然暂时没有直接的现实意义.

        因此,我们试图找一个满足阶乘定义的函数,然后求它在其他数的值,以处理此问题,这就是如下定义的函数.

5778be96c7b353b0a8ed51669d55fd0c.png

       但如此的广义积分定义的函数必然要考虑收敛性,才能方便求值.于是不妨简明地证一下其在复平面上的收敛情况.

44de572c2353e1cfe9e3435e20652ce9.png

       这其实就是说明对所有实部大于0的复数,都是可以定义阶乘的,即值等于Γ函数所取的值.为了使得论述更清晰,接下来求一个之前提到的例子Γ(1/2),要完成这些需要有一定的分析基础证明余元公式.

82b169a867e5d678408dceaa303974be.png

       更进一步,如何考虑左半平面上的情况呢?这可以看成是负数的阶乘.所需要的知识是有关于解析延拓的知识,简而言之,除了0与负整数,都可以正常的进行运算.

8ae57fcd26869db06720ab5729279d03.png

        一般而言,对绝大多数情况,我们不能计算Γ函数的准确解析值,这是很可惜的.不过这个函数仍然可以做许多工作于其他的领域中.这种现象正说明了,抽象的事物并不是因为难以计算与实践就会失去作用,它给予我们的往往是更多地转化与选择的权力.

00ec413f8f7f2752eea28b4da764f43a.png

       最后为了严谨性,再给出一些等价的定义法.我们要注意到,即使在右半平面取定全体整数的值时,解析函数并没有除无穷远点以外的聚点,所以并不能说明这样的解析函数是唯一的,因此这也只是某一种阶乘的延拓定义.

7347bea0d1434199876578779d8cfabe.png

       之后在相关问题中,Γ函数会经常出现,但我们不会再认为这是升级版的阶乘,而是具有更深刻的意义,例如它和其他特殊函数交织的各种有趣函数方程.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值