打算稍微从个人笔记中取材,用几次文章记录素数分布定理(Prime Number Theorem)有关的内容和复分析方法的证明,总的来说这是一个精巧但仍然包含深度的证法,一个较为完整的证明过程可以见Stein第二本的chapter6,7与课后习题,接下来的叙述逻辑也大致与此类同.有关于素数定理的复分析证明,不需要十分高深的理论,但充分地理解仍然需要有各种分析的基础知识才行.
事实上,素数分布定理的相关内容中,许多特殊函数以及它们在复平面上的性质都是十分有趣味性的,它们许多时候都体现了从整数到一般情况的思维拓展,所以先不直接讨论问题,而是先从引入Γ函数与阶乘n!的关系说起.
为了表示排列数,我们熟知阶乘的表示法n!=1*2*…*n,例如十个人排队拍照的不同情况有10!=3628800种.这样的定义浅显易懂,但显然在数学理论里这个东西不容易添加更多的价值.对学习者来说,一个直接的疑问是如何考虑有理数,例如1/2的阶乘,这显然暂时没有直接的现实意义.
因此,我们试图找一个满足阶乘定义的函数,然后求它在其他数的值,以处理此问题,这就是如下定义的函数.
但如此的广义积分定义的函数必然要考虑收敛性,才能方便求值.于是不妨简明地证一下其在复平面上的收敛情况.
这其实就是说明对所有实部大于0的复数,都是可以定义阶乘的,即值等于Γ函数所取的值.为了使得论述更清晰,接下来求一个之前提到的例子Γ(1/2),要完成这些需要有一定的分析基础证明余元公式.
更进一步,如何考虑左半平面上的情况呢?这可以看成是负数的阶乘.所需要的知识是有关于解析延拓的知识,简而言之,除了0与负整数,都可以正常的进行运算.
一般而言,对绝大多数情况,我们不能计算Γ函数的准确解析值,这是很可惜的.不过这个函数仍然可以做许多工作于其他的领域中.这种现象正说明了,抽象的事物并不是因为难以计算与实践就会失去作用,它给予我们的往往是更多地转化与选择的权力.
最后为了严谨性,再给出一些等价的定义法.我们要注意到,即使在右半平面取定全体整数的值时,解析函数并没有除无穷远点以外的聚点,所以并不能说明这样的解析函数是唯一的,因此这也只是某一种阶乘的延拓定义.
之后在相关问题中,Γ函数会经常出现,但我们不会再认为这是升级版的阶乘,而是具有更深刻的意义,例如它和其他特殊函数交织的各种有趣函数方程.