阶乘函数的解析延拓——伽马函数

在这里插入图片描述

解析延拓

解析延拓可以看作是扩大原函数定义域的一种数学方式,例如 f f f函数扩张定义域至 g g g函数,且 f f f g g g函数再同一定义域下的定义(值)不变。

使用代数集合语言表达为:设 A 0 A_0 A0 A A A的子集, f f f A 0 A_0 A0 B B B的映射, g g g A A A B B B的映射, ∀ x ∈ A 0 \forall x\in A_0 xA0 f ( x ) = g ( x ) f(x)=g(x) f(x)=g(x),则 g g g f f f的开拓,记为 f = g ∣ A 0 f=g|_{A_0} f=gA0

很熟悉的例子是:
S n = 1 + r + r 2 + . . . + r n + . . . S n = 1 r − 1 ( ∣ r ∣ < 1 ) ∑ i = 0 + ∞ r i = 1 r − 1 , ( ∣ r ∣ < 1 ) \begin{aligned} S_n&=1+r+r^2+...+r^n+...\\ S_n&=\frac{1}{r-1}\quad(|r|<1)\\ \sum&_{i=0}^{+\infty}r^i=\frac{1}{r-1},(|r|<1) \end{aligned} SnSn=1+r+r2+...+rn+...=r11(r<1)i=0+ri=r11,(r<1)
所得结论的右式就是左式的解析延拓。

伽马函数

Γ ( s ) = ∫ 0 + ∞ x s − 1 e − x d x = ∫ 0 1 x s − 1 e − x d x + ∫ 1 + ∞ x s − 1 e − x d x = Φ ( s ) + Ψ ( s ) \begin{aligned} \Gamma(s)=&\int_0^{+\infty}x^{s-1}e^{-x}dx\\=&\int_0^{1}x^{s-1}e^{-x}dx+\int_1^{+\infty}x^{s-1}e^{-x}dx\\ =&\Phi(s)+\Psi(s) \end{aligned} Γ(s)===0+xs1exdx01xs1exdx+1+xs1exdxΦ(s)+Ψ(s)

方程递推式

Γ ( s + 1 ) = lim ⁡ A → + ∞ ∫ 0 A x s e − x d x = − x s e − x ∣ 0 A + ∫ 0 A e − x d x s = − A s e − A + s ∫ 0 A x s − 1 e − x d x = s Γ ( s ) \begin{aligned} \Gamma(s+1)=&\lim_{A\rightarrow+\infty}\int_0^{A}x^{s}e^{-x}dx\\=&-x^{s}e^{-x}|_{0}^{A}+\int_0^{A}e^{-x}dx^s\\ =&-A^{s}e^{-A}+s\int_0^{A}x^{s-1}e^{-x}dx\\ =&s\Gamma(s) \end{aligned} Γ(s+1)====A+lim0Axsexdxxsex0A+0AexdxsAseA+s0Axs1exdxsΓ(s)

  • 若参数是正整数,那么:
    Γ ( s + 1 ) = s Γ ( s ) = ( s + 1 ) s ∗ . . . ∗ 2 ∗ 1 Γ ( 1 ) = s ! ∫ 0 + ∞ e − x d x = s ! \begin{aligned} \Gamma(s+1)=&s\Gamma(s)\\ =&(s+1)s*...*2*1\Gamma(1)\\ =&s!\int_0^{+\infty}e^{-x}dx\\ =&s! \end{aligned} Γ(s+1)====sΓ(s)(s+1)s...21Γ(1)s!0+exdxs!
    可以看出对于非负整数, Γ ( n + 1 ) = n ! \Gamma(n+1)=n! Γ(n+1)=n!

  • 当参数取零时:
    Γ ( 0 ) = ∫ 0 + ∞ x − 1 e − x d x lim ⁡ ϵ → 0 ∫ ϵ 1 x − 1 e − x d x ≥ 1 e lim ⁡ ϵ → 0 ∫ ϵ 1 x − 1 d x = 1 e lim ⁡ ϵ → 0 l n x ∣ ϵ 1 = + ∞ \begin{aligned} \Gamma(0)&=\int_0^{+\infty}x^{-1}e^{-x}dx\\ \lim_{\epsilon\rightarrow0}\int_\epsilon^{1}x^{-1}e^{-x}dx&\geq\frac{1}{e}\lim_{\epsilon\rightarrow0}\int_\epsilon^{1}x^{-1}dx\\ &=\frac{1}{e}\lim_{\epsilon\rightarrow0}lnx|_{\epsilon}^{1}\\ &=+\infty \end{aligned} Γ(0)ϵ0limϵ1x1exdx=0+x1exdxe1ϵ0limϵ1x1dx=e1ϵ0limlnxϵ1=+

    所以得到伽马函数对负整数是没有定义的。

  • 当参数取非整数时(以正数为例):
    n < s ≤ n + 1 Γ ( s + 1 ) = s Γ ( s ) = s ( s − 1 ) ( s − n ) Γ ( s − n ) \begin{aligned} n < s&\le n+1\\ \Gamma(s+1)&=s\Gamma(s)\\ &=s(s-1)(s-n)\Gamma(s-n)\\ \end{aligned} n<sΓ(s+1)n+1=sΓ(s)=s(s1)(sn)Γ(sn)
    如果已知 Γ ( s − n ) \Gamma(s-n) Γ(sn)就可以算出 Γ ( s ) \Gamma(s) Γ(s)的值。

综上来看,伽马函数是阶乘函数的推广。

可视化

使用mathematica可视化实数平面图像与复平面图像,其中复平面取值为绝对值所以图像在实部小于零的情况下不绝对严谨。

在这里插入图片描述

f[x_] := Gamma[x];
Plot[f[x], {x, -3, 5}]

在这里插入图片描述

g[x_, y_] := Abs[Gamma[1.0*x + 1.0*y*I]];
Plot3D[g[x, y], {x, -3, 5}, {y, -2, 2}]
证明 Γ ( 1 2 ) = π \Gamma(\frac{1}{2})=\sqrt{\pi} Γ(21)=π

证明方式多种多样,这里暂时先给出一个例子

正态分布相关联:

正态分布是一类重要的分布,概率密度函数为:
f μ , σ ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 d x f_{\mu,\sigma}(x)=\frac{1}{\sqrt{2\pi \sigma ^2}}e^{-\frac{(x-\mu)^2}{2\sigma ^2}}dx fμ,σ(x)=2πσ2 1e2σ2(xμ)2dx
为了更进一步地观察,将概率密度函数求积分:
∫ − ∞ + ∞ 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 d x = 1 \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi \sigma ^2}}e^{-\frac{(x-\mu)^2}{2\sigma ^2}}dx=1 +2πσ2 1e2σ2(xμ)2dx=1
接下来取 μ = 0 \mu=0 μ=0 σ = 1 \sigma=1 σ=1并使得积分对称得到:
2 ∫ 0 + ∞ e − x 2 2 d x = 2 π 2\int_{0}^{+\infty}e^{-\frac{x^2}{2}}dx=\sqrt{2\pi} 20+e2x2dx=2π
之后利用换元法 u = x 2 2 u=\frac{x^2}{2} u=2x2发现 d x = d u 2 u dx=\frac{du}{\sqrt {2u}} dx=2u du,带入上式:
2 ∫ 0 + ∞ u − 1 2 e − u d x = 2 π \sqrt2\int_{0}^{+\infty}u^{-\frac{1}{2}}e^{-u}dx=\sqrt{2\pi} 2 0+u21eudx=2π
最终得到:
∫ 0 + ∞ u 1 2 − 1 e − u d x = π \int_{0}^{+\infty}u^{\frac{1}{2}-1}e^{-u}dx=\sqrt{\pi} 0+u211eudx=π
可以发现等式左边的积分项为 Γ ( 1 2 ) \Gamma(\frac{1}{2}) Γ(21)

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学小牛马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值