spss与python的区别_PCA主成分分析-python和SPSS对比

本文探讨了使用Python的PCA(主成分分析)进行数据降维的过程,包括数据预处理、PCA应用及可视化。通过比较,解释了PCA在Python中的实现原理,如寻找最大化方差的单位向量,以及PCA如何帮助减少数据维度并保持数据区分性。
摘要由CSDN通过智能技术生成

image.png

特征值对应的特征向量就是理想中想取得正确的坐标轴,而特征值就等于数据在旋转之后的坐标上对应维度上的方差。

通常情况,数据量巨大且并非所有数据都能连成一条线。

这时候我们要找到一个维度(一个向量),让所有数据投影(降维)到该向量上之后,尽可能地分散。因为越分散说明通过该向量降维之后数据得以很好地区分,越紧凑说明该降维导致了越多信息丢失。数学上表达“分散”的方式之一就是:方差。方差越大,则说明数据越分散

为了计算方差方便,对数据进行去均值(即以各维度的均值所指明的点为中点)。接下来我们要找到一个单位向量(为了计算方便)使得投影后数据最分散,即方差最大:

1.导入相关模块:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

2.导入数据:

import os

os.chdir("/Users/liyili2/Downloads/datas/")

data=pd.read_csv("factor1.csv")

data=data.drop('序号',axis=1)

data_features=data.iloc[:,1:]

data.head()

3.进行降维:

from sklearn.decomposition import PCA

pca=PCA(n_components=0.89)

pca.fit(data_features)

print("特征值是:%s"%pca.explained_variance_) #特征值

print("特征向量是:%s"%pca.components_) #特征向量

print("成分个数是:%s"%pca.n_components_) #成分个数

print(pca.explained_variance_ratio_) #返回所保留的n个成分各自的方法百分比

x_pca=pca.transform(data_features)#用X来训练PCA模型,同时返回降维后的数据,这里的x_pca是降维后的数据

print("x_pca",x_pca[:5])

x_new=pca.inverse_transform(x_pca)#将降维后的数据转换成原始数据

print('original shape',data_features.shape)

print('transformed shape',x_pca.shape)

print(x_pca[:5])

#降维后可视化咋操作

#c的值怎么确定啊!!!,不明显啊

colors=np.random.rand(30)

plt.scatter(x_pca[:,0],x_pca[:,1],c=colors,edgecolor='none',alpha=0.5,cmap='Reds',s=5)

plt.axis('equal')

plt.grid()

plt.colorbar()

结果:

特征值是:[3011311.0188587 1926192.37121641]

特征向量是:[[ 7.58192067e-01 3.07331923e-01 2.19659649e-01 4.47991226e-01

9.55259672e-02 -3.41757191e-04 -5.25326480e-04 2.69480567e-01]

[-4.71076647e-01 3.53975814e-01 -6.23952261e-02 7.46167612e-01

-2.43123379e-01 2.52583659e-05 -4.97252960e-04 -1.81712466e-01]]

成分个数是:2

[0.56089678 0.35877898]

x_pca [[ 1010.73256745 2602.64884973]

[ -130.6189745 1742.26121954]

[ 554.58843503 -1476.24842192]

[-1194.42488029 -295.95861306]

[-1689.77830869 -525.80230496]]

original shape (30, 8)

transformed shape (30, 2)

[[ 1010.73256745 2602.64884973]

[ -130.6189745 1742.26121954]

[ 554.58843503 -1476.24842192]

[-1194.42488029 -295.95861306]

[-1689.77830869 -525.80230496]]

image.png

image.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值