![7c943cd40e87ba5a56585b0d998e8561.png](https://i-blog.csdnimg.cn/blog_migrate/6b97500eb752c04147d841ff14dbf4ee.jpeg)
假期第一篇帖子
只收藏不点赞的都是流氓~
准备:
pip install keras
Tips of DeepLearning
先检查在训练集上的训练效果,再检查测试集上的训练效果。
1、如果在训练集上就表现不好,可以采取以下两种方法:
方法1:使用新的激活函数
激活函数:连续可导的非线性函数,尽可能简单,导函数的值域在合适的区间。
![fdd8eb451d562dc4ca044906472bc357.png](https://i-blog.csdnimg.cn/blog_migrate/a064717ae62aafa28a2d57446fc5eb8e.jpeg)
![2dda5cc07c3311c674b19ab3ba24229f.png](https://i-blog.csdnimg.cn/blog_migrate/d15be73d4e74c51ef654bef2d098cfd9.jpeg)
方法2:自适应的学习率
①Adagrad
②RMSprop
③Momentum(动量)
④Adam (RMSprop+Momentum)
详情参考:
CSDN-专业IT技术社区-登录
2、如果在训练集上表现良好,但在测试集上表现不好,可以采取以下三种方法:
方法1:正则化
方法2:earlystoping
方法3:dropout
手写数字数据下载网址:MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges
![7583768c6813da83a19c0fa735350eb4.png](https://i-blog.csdnimg.cn/blog_migrate/9274d3ad5a53b2209e80fae6db335bff.jpeg)
#读取数据
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #实例化对象
(X_train,y_train)=(mnis