深度学习数字仪表盘识别_深度学习入门篇-手写数字识别

本文介绍了深度学习在手写数字识别中的应用,包括训练集和测试集的表现,以及如何提升模型性能。讨论了不同的激活函数、自适应学习率优化器如Adagrad、RMSprop、Momentum和Adam,以及正则化、早停和dropout等策略。通过实验,调整了激活函数、数据标准化、dropout和优化器,提高了分类准确率。
摘要由CSDN通过智能技术生成

7c943cd40e87ba5a56585b0d998e8561.png

假期第一篇帖子

只收藏不点赞的都是流氓~

准备:

pip install keras

Tips of DeepLearning

先检查在训练集上的训练效果,再检查测试集上的训练效果。

1、如果在训练集上就表现不好,可以采取以下两种方法:

方法1:使用新的激活函数

激活函数:连续可导的非线性函数,尽可能简单,导函数的值域在合适的区间。

fdd8eb451d562dc4ca044906472bc357.png

2dda5cc07c3311c674b19ab3ba24229f.png

方法2:自适应的学习率

①Adagrad

②RMSprop

③Momentum(动量)

④Adam (RMSprop+Momentum)

详情参考:

CSDN-专业IT技术社区-登录

2、如果在训练集上表现良好,但在测试集上表现不好,可以采取以下三种方法:

方法1:正则化

方法2:earlystoping

方法3:dropout

手写数字数据下载网址:MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges

7583768c6813da83a19c0fa735350eb4.png
#读取数据
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #实例化对象

(X_train,y_train)=(mnis
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值