半正定矩阵的判定方法_线性代数30——正定矩阵和最小值

本文详细探讨了正定矩阵的判定,包括4种验证方法,并通过实例解释了正定矩阵与最小值的关系。文章指出,正定矩阵对应的二次型存在最小值,并介绍了二元和三元函数的最小值判断。最后,通过特征值和二次型的配方,证明了正定矩阵确保了二次型的最小值。
摘要由CSDN通过智能技术生成

cfdfdf3568c1dab798059facdf0b9b3b.png

我们经常在判定一个函数是否有最小值时使用正定矩阵,正定矩阵和最小值有什么关系呢?

1 判断正定矩阵

给出一个矩阵:

3cdbf6a5e9bb0cd55379e4d61352a9cc.png

有4个途径可以判定该矩阵是否是正定矩阵(注意这个矩阵的4个元素中有2个b,这是因为正定矩阵是对称矩阵,如果A的次对角线的元素不相等,A就不是对称的,也就没有必要进一步判定是否是正定的):

  1. 所有特征值大于
  2. 行列式及左上角的所有
    阶子行列式均为正(1≤k≤n)
  3. a > 0,
    (针对2阶矩阵)
  4. 对于任意非零向量x

其中第4个是正定的定义,前3个是用来验证正定的条件。

当y怎样取值时,下面的2阶矩阵是正定的?

f6c8284115f7154d7d0e449bfb642eec.png

根据条件2可知,

时,即y>18时,矩阵是正定的。

如果y=18,则矩阵正好处于正定的临界点上,此时A是奇异矩阵,有一个特征值是0,

。我们称这种处于临界点上的正定矩阵为半正定矩阵。

2 矩阵的二次型

再来看一下

。对于非零向量
x来说, Ax是线性形式,加入
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值