半正定矩阵的判定方法_线性代数30——正定矩阵和最小值

本文详细探讨了正定矩阵的判定,包括4种验证方法,并通过实例解释了正定矩阵与最小值的关系。文章指出,正定矩阵对应的二次型存在最小值,并介绍了二元和三元函数的最小值判断。最后,通过特征值和二次型的配方,证明了正定矩阵确保了二次型的最小值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

cfdfdf3568c1dab798059facdf0b9b3b.png

我们经常在判定一个函数是否有最小值时使用正定矩阵,正定矩阵和最小值有什么关系呢?

1 判断正定矩阵

给出一个矩阵:

3cdbf6a5e9bb0cd55379e4d61352a9cc.png

有4个途径可以判定该矩阵是否是正定矩阵(注意这个矩阵的4个元素中有2个b,这是因为正定矩阵是对称矩阵,如果A的次对角线的元素不相等,A就不是对称的,也就没有必要进一步判定是否是正定的):

  1. 所有特征值大于
  2. 行列式及左上角的所有
    阶子行列式均为正(1≤k≤n)
  3. a > 0,
    (针对2阶矩阵)
  4. 对于任意非零向量x

其中第4个是正定的定义,前3个是用来验证正定的条件。

当y怎样取值时,下面的2阶矩阵是正定的?

f6c8284115f7154d7d0e449bfb642eec.png

根据条件2可知,

时,即y>18时,矩阵是正定的。

如果y=18,则矩阵正好处于正定的临界点上,此时A是奇异矩阵,有一个特征值是0,

。我们称这种处于临界点上的正定矩阵为半正定矩阵。

2 矩阵的二次型

再来看一下

。对于非零向量
x来说, Ax是线性形式,加入
后就变成了含有二次项的形式,比如:

2e19821313ad2df449f8bfa3be0de39e.png

这种形式称为矩阵的二次型。当然

也只有二次型,没有三次型和四次型,即使
x是更多维度的向量也一样,比如当 x是三维向量时,最终结果仍然只含有二次项:

426ed17909bf402641137081e8287e64.png

如果对于任意非零向量x来说,矩阵的二次型都大于0,那么这个矩阵是正定矩阵。

y=18时A是半正定矩阵,当

时,其二次型为0:

1d5f3f0cea2e9448f427e3d19f67a4a7.png

3二次型的意义

为了画出几何图形,我们以二阶矩阵为例,先看一个非正定矩阵:

196dea5c9f338b8d00a11c31a36b1ac6.png

它的二次型是

,其几何图形如下:

b92998d514d851c747378c477172cc1c.png

从图形上看没有最小值点,原点处是一个鞍点,在某个方向看是极大值,同时又是另一个方向的极小值。下图是个经典的鞍点,图形呈马鞍状:

31a86e4891cbc9c11135a64268aa5381.png

再来看正定矩阵:

d7267f6979121f9a93044d3a684bd0e0.png

A的二次型是

,图形如下:

30426b4dfad924013f236ecccfb54f25.png

回顾本节出现的两个二次型,它们都可以通过配方写成完全平方的形式:

01ab6c41b74ad22946bfe0811d5e7bd6.png

当x,y不全是0时,可以判断第2个二次型一定大于0,第一个就不一定了。此外还可以通过二次型判断临界点是(0, 0)点。

经过配方后的二次型很奇妙,它还可以来自消元:

c4473c6257b5cc329f9379e4a416e6ea.png

消元变成了上三角矩阵。A可以通过LU分解成:

61154804ad4787d15c2a0ebe2d95f3f0.png

现在把原矩阵、二次型和LU分解放到一块:

32efa16f6bc421b2979095ab2af4dbc4.png

经过消元后的第一个主元是x的系数,第二个主元正是配方项

的系数,如果f大于0,那么这两个系数一定是正值,这也是为什么正定矩阵的
主元一定都为正的原因。

换一个矩阵试试:

5a9d3298a6ea1531189c996a7b7cb177.png

其中一个主元是负数,对应的二次型也不能保证一定大于0。

4正定矩阵与最小值

正定矩阵对应的二次型是有最小值的。

4.1 二元函数

5d974b7ec9cc549869a008f891c78a3b.png

判断一元函数是否有最小值,需要判断它的导数和二阶导,同样,多元函数是否有最小值也要根据临界点和二阶导判断。我们在多变量微积分中介绍过怎样判断二元函数的最小值,最小值出现在临界点上:f(x, y)的一个临界点是

,即
, f的最小值是根据二阶导数判断的:

a6725b8c86062efa5e38239065055454.png

对于

来说:

5def8118ac5ae9e960f92704a3e68290.png

临界点符合最小值的条件,因此(0,0)是

的最小值。这个结论实际上来源于对
A的二阶导矩阵的正定性的判断:

07e42cb255b986a2424a09f221537b0c.png

对于二元函数的混合偏导来说,

是一样的,因此这个矩阵是对称矩阵。在求得临界点后,根据判定正定矩阵的第3条,只要满足下面的条件,则这个二阶导矩阵是正定矩阵:

38bd6d0b6cd2c21c3544d59b819e2b39.png

4.2 三元函数

现在召唤一个三元矩阵,然后判断它的正定性:

562dbcd16b8a429a3efbb6600fe06820.png

先对其进行消元:

2d0a3b9b2063f0afc870416a81400525.png

A的主元都大于0,这符合正定矩阵的性质,是一个必要条件。

接下来我们通过子行列式判断A的正定性:

3e7ae51491e030100586015bc0fce7b9.png

现在可以确定A是正定矩阵。如果进一步求得特征值,则A的3个特征值是:

797f7cf7e1152af990d2c22a7fee6ed0.png

特征值之和等于A的迹,特征值之积等于A的主元之积。

A是正定矩阵,因此可以判定A的二次型是有最小值的:

8c60c175a00746b914e54e5d4f188f18.png

用配方法验证:

a1ea13126b929ec39128dfeef7f9b65a.png

可以看出最小值的点是(0, 0, 0)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值