我们经常在判定一个函数是否有最小值时使用正定矩阵,正定矩阵和最小值有什么关系呢?
1 判断正定矩阵
给出一个矩阵:
有4个途径可以判定该矩阵是否是正定矩阵(注意这个矩阵的4个元素中有2个b,这是因为正定矩阵是对称矩阵,如果A的次对角线的元素不相等,A就不是对称的,也就没有必要进一步判定是否是正定的):
- 所有特征值大于
- 行列式及左上角的所有
阶子行列式均为正(1≤k≤n)
- a > 0,
(针对2阶矩阵)
- 对于任意非零向量x,
其中第4个是正定的定义,前3个是用来验证正定的条件。
当y怎样取值时,下面的2阶矩阵是正定的?
根据条件2可知,
时,即y>18时,矩阵是正定的。
如果y=18,则矩阵正好处于正定的临界点上,此时A是奇异矩阵,有一个特征值是0,
。我们称这种处于临界点上的正定矩阵为半正定矩阵。
2 矩阵的二次型
再来看一下
。对于非零向量
x来说,
Ax是线性形式,加入