
我们经常在判定一个函数是否有最小值时使用正定矩阵,正定矩阵和最小值有什么关系呢?
1 判断正定矩阵
给出一个矩阵:

有4个途径可以判定该矩阵是否是正定矩阵(注意这个矩阵的4个元素中有2个b,这是因为正定矩阵是对称矩阵,如果A的次对角线的元素不相等,A就不是对称的,也就没有必要进一步判定是否是正定的):
- 所有特征值大于
- 行列式及左上角的所有
阶子行列式均为正(1≤k≤n)
- a > 0,
(针对2阶矩阵)
- 对于任意非零向量x,
其中第4个是正定的定义,前3个是用来验证正定的条件。
当y怎样取值时,下面的2阶矩阵是正定的?

根据条件2可知,
如果y=18,则矩阵正好处于正定的临界点上,此时A是奇异矩阵,有一个特征值是0,
2 矩阵的二次型
再来看一下

这种形式称为矩阵的二次型。当然

如果对于任意非零向量x来说,矩阵的二次型都大于0,那么这个矩阵是正定矩阵。
y=18时A是半正定矩阵,当

3二次型的意义
为了画出几何图形,我们以二阶矩阵为例,先看一个非正定矩阵:

它的二次型是

从图形上看没有最小值点,原点处是一个鞍点,在某个方向看是极大值,同时又是另一个方向的极小值。下图是个经典的鞍点,图形呈马鞍状:

再来看正定矩阵:

A的二次型是

回顾本节出现的两个二次型,它们都可以通过配方写成完全平方的形式:

当x,y不全是0时,可以判断第2个二次型一定大于0,第一个就不一定了。此外还可以通过二次型判断临界点是(0, 0)点。
经过配方后的二次型很奇妙,它还可以来自消元:

消元变成了上三角矩阵。A可以通过LU分解成:

现在把原矩阵、二次型和LU分解放到一块:

经过消元后的第一个主元是x的系数,第二个主元正是配方项
换一个矩阵试试:

其中一个主元是负数,对应的二次型也不能保证一定大于0。
4正定矩阵与最小值
正定矩阵对应的二次型是有最小值的。
4.1 二元函数

判断一元函数是否有最小值,需要判断它的导数和二阶导,同样,多元函数是否有最小值也要根据临界点和二阶导判断。我们在多变量微积分中介绍过怎样判断二元函数的最小值,最小值出现在临界点上:f(x, y)的一个临界点是

对于

临界点符合最小值的条件,因此(0,0)是

对于二元函数的混合偏导来说,

4.2 三元函数
现在召唤一个三元矩阵,然后判断它的正定性:

先对其进行消元:

A的主元都大于0,这符合正定矩阵的性质,是一个必要条件。
接下来我们通过子行列式判断A的正定性:

现在可以确定A是正定矩阵。如果进一步求得特征值,则A的3个特征值是:

特征值之和等于A的迹,特征值之积等于A的主元之积。
A是正定矩阵,因此可以判定A的二次型是有最小值的:

用配方法验证:

可以看出最小值的点是(0, 0, 0)。