线性代数及其应用:第六章 正定矩阵与奇异值分解


  前言:这篇blog是《 Linear Algebra and Its Applications》第六章的一些学习笔记。

正定矩阵

  这一章要用到对实对称矩阵 A A A的三角分解 A = L D L T A=LDL^{T} A=LDLT,以及谱定理 A = Q Λ Q T A=Q\Lambda Q^{T} A=QΛQT

1. 正定矩阵

  对任意非零实向量 x x x,有 x T A x > 0 x^{T}Ax>0 xTAx>0,则 A A A为正定矩阵。

  在线性代数中,正定矩阵是对称矩阵,因为来自二次型;对任一二次型,总可以写成对称矩阵的形式,即 f ( x 1 , x 2 … x n ) = x T A x = ∑ i = 1 n ∑ j = 1 n a i j x i x j f(x_{1}, x_{2}\dots x_{n})=x^{T}Ax=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}a_{ij}x_{i}x_{j} f(x1,x2xn)=xTAx=i=1nj=1naijxixj

如果 A A A是正定矩阵,则 x T A x x^{T}Ax xTAx表示的二次型有最小值,不存在鞍点。

  但在矩阵论中,正定矩阵不一定是对称矩阵,例如 [ 1 − 1 1 0 ] \left [ \begin{matrix} 1 & -1 \\ 1 & 0\end{matrix}\right ] [1110]

1.1. 实对称矩阵是正定矩阵的充要条件

  判断实对称矩阵 A A A是否为正定矩阵,有5个充要条件,只要满足其中一个即可。

  1. x T A x > 0 x^{T}Ax>0 xTAx>0,对所有非零实向量 x x x均成立;
  2. A A A的所有特征值 λ i \lambda_{i} λi满足 λ i > 0 \lambda_{i}>0 λi>0
  3. 所有顺序主子式 A k A_{k} Ak是正的;
  4. 所有主元(piovts)大于0(最快捷条件);
  5. A A A能分解成 R T R R^{T}R RTR,其中R的列向量相互独立。

证明:

条件1:定义,证毕。

条件2 ⟺ \Longleftrightarrow 条件1:对 A A A进行分解, A = Q Λ Q T A=Q\Lambda Q^{T} A=QΛQT,有 x T A x = x T Q Λ Q T x x^{T}Ax=x^{T}Q\Lambda Q^{T}x xTAx=xTQΛQTx,令 x T Q = y T x^{T}Q=y^{T} xTQ=yT,则 x T A x = y T Λ y = ∑ i = 1 n λ i y i 2 x^{T}Ax=y^{T}\Lambda y=\sum\limits_{i=1}^{n}\lambda_{i}y_{i}^{2} xTAx=yTΛy=i=1nλiyi2,根据条件1,如果实对称矩阵 A A A是正定矩阵,则任意非零向量 x x x x T A x x^{T}Ax xTAx恒大于0,所以 ∑ i = 1 n λ i y i 2 \sum\limits_{i=1}^{n}\lambda_{i}y_{i}^{2} i=1nλiyi2恒大于0,所以 λ i > 0 \lambda_{i}>0 λi>0,证毕。

条件1和2 ⟹ \Longrightarrow 条件3:对于实对称矩阵 A A A,以证明 A 3 A_{3} A3为例,令 x = [ x 1 , x 2 , x 3 , 0 , 0 , 0 , …   ] T x=[x_{1}, x_{2},x_{3},0,0,0,\dots]^{T} x=[x1,x2,x3,0,0,0,]T,则 x T A x x^{T}Ax xTAx等价于 (1) [ x 1 , x 2 , x 3 ] [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] [ x 1 x 2 x 3 ] [x_{1},x_{2},x_{3}]\left [ \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{matrix} \right ]\left [ \begin{matrix} x_{1} \\ x_{2} \\ x_{3}\end{matrix} \right ]\tag{1} [x1,x2,x3]a11a21a31a12a22a32a13a23a33x1x2x3(1)

根据条件1,如果实对称矩阵 A A A是正定矩阵,则 x T A x > 0 x^{T}Ax>0 xTAx>0,所以(1)的中间矩阵也应该是正定矩阵,根据条件2,(1)的中间矩阵的所有特征值大于0,所以 A 3 = ( 1 ) 的 中 间 矩 阵 的 所 有 特 征 值 乘 积 > 0 A_{3}=(1)的中间矩阵的所有特征值乘积>0 A3=(1)>0证毕。方阵的行列式等于所有特征值乘积,在第五章特征值与特征向量中推导过这一结论。

条件3 ⟹ \Longrightarrow 条件4:以 d 3 d_{3} d3为例, d 3 = A 3 A 2 > 0 d_{3}=\frac{A_{3}}{A_{2}}>0 d3=A2A3>0,证毕。关于求 d 3 d_{3} d3用的表达式,在第四章行列式中推导过。

条件4 ⟹ \Longrightarrow 条件1,对 A A A进行三角分解 A = L D L T A=LDL^{T} A=LDLT,则 x T A x = x T L D L T x x^{T}Ax=x^{T}LDL^{T}x xTAx=xTLDLTx,令 y = L T x y=L^{T}x y=LTx,则 x T A x = y T D y x^{T}Ax=y^{T}Dy xTAx=yTDy,对角矩阵 D D D存的是 A A A的主元(pivots),所以 y T D y = ∑ i = 1 n d i y i 2 > 0 y^{T}Dy=\sum\limits_{i=1}^{n}d_{i}y_{i}^{2}>0 yTDy=i=1ndiyi2>0可以推出 x T A x > 0 x^{T}Ax>0 xTAx>0

至此,条件1-4相互均可以推导。

条件5 ⟺ \Longleftrightarrow 条件4: A = L D L T = ( L D ) ( D L T ) = R T R A=LDL^{T}=(L\sqrt{D})(\sqrt{D}L^{T})=R^{T}R A=LDLT=(LD )(D LT)=RTR,其中 R = D L T R=\sqrt{D}L^{T} R=D LT;或者条件5 ⟺ \Longleftrightarrow 条件2: A = Q Λ Q T = ( Q Λ ) ( Λ Q T ) = R T R A=Q\Lambda Q^{T}=(Q\sqrt{\Lambda})(\sqrt{\Lambda}Q^{T})=R^{T}R A=QΛQT=(QΛ )(Λ QT)=RTR,其中 R = Λ Q T R=\sqrt{\Lambda}Q^{T} R=Λ QT

1.2. 实对称矩阵是半正定矩阵的充要条件

  半正定矩阵就是对任意非零实向量 x x x,有 x T A x ≥ 0 x^{T}Ax\geq0 xTAx0,相对正定矩阵多了等于0;相应的充要条件也加上了等号。

  1. x T A x ≥ 0 x^{T}Ax\geq0 xTAx0,对所有非零实向量;
  2. A A A的所有特征值 λ i \lambda_{i} λi满足 λ i ≥ 0 \lambda_{i}\geq0 λi0
  3. 所有顺序主子式 A k A_{k} Ak ≥ 0 \geq 0
  • 4
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值