hot编码 字符one_使用字符级RNN进行名字分类

我们将构建和训练字符级RNN来对单词进行分类。字符级RNN将单词作为一系列字符读取,在每一步输出预测和“隐藏状态”,将其先前的隐藏 状态输入至下一时刻。我们将最终时刻输出作为预测结果,即表示该词属于哪个类。

具体来说,我们将在18种语言构成的几千个名字的数据集上训练模型,根据一个名字的拼写预测它是哪种语言的名字:

$ python predict.py Hinton(-0.47) Scottish(-1.52) English(-3.57) Irish$ python predict.py Schmidhuber(-0.19) German(-2.48) Czech(-2.68) Dutch

1. 准备数据

下载数据(https://download.pytorch.org/tutorial/data.zip)并将其解压到当前文件夹。

在"data/names"文件夹下是名称为"[language].txt"的18个文本文件。每个文件的每一行都有一个名字,它们几乎都是罗马化的文本 (但是我们仍需要将其从Unicode转换为ASCII编码)

我们最终会得到一个语言对应名字列表的字典,{language: [names ...]}。通用变量“category”和“line”(例子中的语言和名字单词) 用于以后的可扩展性。

from __future__ import unicode_literals, print_function, divisionfrom io import openimport globimport osdef findFiles(path): return glob.glob(path)print(findFiles('data/names/*.txt'))import unicodedataimport stringall_letters = string.ascii_letters + " .,;'"n_letters = len(all_letters)# 将Unicode字符串转换为纯ASCII, 感谢https://stackoverflow.com/a/518232/2809427def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' and c in all_letters )print(unicodeToAscii('Ślusàrski'))# 构建category_lines字典,每种语言的名字列表category_lines = {}all_categories = []# 读取文件并分成几行def readLines(filename): lines = open(filename, encoding='utf-8').read().strip().split('') return [unicodeToAscii(line) for line in lines]for filename in findFiles('data/names/*.txt'): category = os.path.splitext(os.path.basename(filename))[0] all_categories.append(category) lines = readLines(filename) category_lines[category] = linesn_categories = len(all_categories)

输出结果:

['data/names/French.txt', 'data/names/Czech.txt', 'data/names/Dutch.txt', 'data/names/Polish.txt', 'data/names/Scottish.txt', 'data/names/Chinese.txt', 'data/names/English.txt', 'data/names/Italian.txt', 'data/names/Portuguese.txt', 'data/names/Japanese.txt', 'data/names/German.txt', 'data/names/Russian.txt', 'data/names/Korean.txt', 'data/names/Arabic.txt', 'data/names/Greek.txt', 'data/names/Vietnamese.txt', 'data/names/Spanish.txt', 'data/names/Irish.txt']Slusarski

现在我们有了category_lines,一个字典变量存储每一种语言及其对应的每一行文本(名字)列表的映射关系。变量all_categories是全部 语言种类的列表,变量n_categories是语言种类的数量,后续会使用。

print(category_lines['Italian'][:5])

输出结果:

['Abandonato', 'Abatangelo', 'Abatantuono', 'Abate', 'Abategiovanni']

单词转变为张量

现在我们已经加载了所有的名字,我们需要将它们转换为张量来使用它们。

我们使用大小为<1 x n_letters>的“one-hot 向量”表示一个字母。一个one-hot向量所有位置都填充为0,并在其表示的字母的位置表示为1, 例如"b" = <0 1 0 0 0 ...>.(字母b的编号是2,第二个位置是1,其他位置是0)

我们使用一个的2D矩阵表示一个单词

额外的1维是batch的维度,PyTorch默认所有的数据都是成batch处理的。我们这里只设置了batch的大小为1。

import torch# 从all_letters中查找字母索引,例如 "a" = 0def letterToIndex(letter): return all_letters.find(letter)# 仅用于演示,将字母转换为<1 x n_letters> 张量def letterToTensor(letter): tensor = torch.zeros(1, n_letters) tensor[0][letterToIndex(letter)] = 1 return tensor# 将一行转换为,# 或一个0ne-hot字母向量的数组def lineToTensor(line): tensor = torch.zeros(len(line), 1, n_letters) for li, letter in enumerate(line): tensor[li][0][letterToIndex(letter)] = 1 return tensorprint(letterToTensor('J'))print(lineToTensor('Jones').size())
  • 输出结果:
tensor([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])torch.Size([5, 1, 57])

2. 构造神经网络

在autograd之前,要在Torch中构建一个可以复制之前时刻层参数的循环神经网络。layer的隐藏状态和梯度将交给计算图自己处理。这意味着 你可以像实现的常规的 feed-forward 层一样,以很纯粹的方式实现RNN。

这个RNN组件 (几乎是复制的the PyTorch for Torch users tutorial(https://pytorch.org/tutorials/beginner/former_torchies/nn_tutorial.html#example-2-recurrent-net)) 仅使用两层 linear 层对输入和隐藏层做处理,在最后添加一层 LogSoftmax 层预测最终输出。

import torch.nn as nnclass RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNN, self).__init__() self.hidden_size = hidden_size self.i2h = nn.Linear(input_size + hidden_size, hidden_size) self.i2o = nn.Linear(input_size + hidden_size, output_size) self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden): combined = torch.cat((input, hidden), 1) hidden = self.i2h(combined) output = self.i2o(combined) output = self.softmax(output) return output, hidden def initHidden(self): return torch.zeros(1, self.hidden_size)n_hidden = 128rnn = RNN(n_letters, n_hidden, n_categories)

要运行此网络的一个步骤,我们需要传递一个输入(在我们的例子中,是当前字母的Tensor)和一个先前隐藏的状态(我们首先将其初始化为零)。 我们将返回输出(每种语言的概率)和下一个隐藏状态(为我们下一步保留使用)。

input = letterToTensor('A')hidden =torch.zeros(1, n_hidden)output, next_hidden = rnn(input, hidden)

为了提高效率,我们不希望为每一步都创建一个新的Tensor,因此我们将使用lineToTensor函数而不是letterToTensor函数,并使用切片 方法。这一步可以通过预先计算批量的张量进一步优化。

input = lineToTensor('Albert')hidden = torch.zeros(1, n_hidden)output, next_hidden = rnn(input[0], hidden)print(output)

输出结果:

tensor([[-2.8857, -2.9005, -2.8386, -2.9397, -2.8594, -2.8785, -2.9361, -2.8270, -2.9602, -2.8583, -2.9244, -2.9112, -2.8545, -2.8715, -2.8328, -2.8233, -2.9685, -2.9780]], grad_fn=)

可以看到输出是一个<1 x n_categories>的张量,其中每一条代表这个单词属于某一类的可能性(越高可能性越大)。

3. 训练

3.1 训练前的准备

进行训练步骤之前我们需要构建一些辅助函数。

第一个是当我们知道输出结果对应每种类别的可能性时,解析神经网络的输出。我们可以使用 Tensor.topk函数得到最大值在结果中的位置索引:

def categoryFromOutput(output): top_n, top_i = output.topk(1) category_i = top_i[0].item() return all_categories[category_i], category_iprint(categoryFromOutput(output))

输出结果:

('Arabic', 13)

第二个是我们需要一种快速获取训练示例(得到一个名字及其所属的语言类别)的方法:

import randomdef randomChoice(l): return l[random.randint(0, len(l) - 1)]def randomTrainingExample(): category = randomChoice(all_categories) line = randomChoice(category_lines[category]) category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long) line_tensor = lineToTensor(line) return category, line, category_tensor, line_tensorfor i in range(10): category, line, category_tensor, line_tensor = randomTrainingExample() print('category =', category, '/ line =', line)

输出结果:

category = Dutch / line = Tholbergcategory = Irish / line = Murphycategory = Vietnamese / line = Ancategory = German / line = Von essencategory = Polish / line = Kijekcategory = Scottish / line = Bellcategory = Czech / line = Marikcategory = Korean / line = Jeongcategory = Korean / line = Choecategory = Portuguese / line = Alves

3.2 训练神经网络

现在,训练过程只需要向神经网络输入大量的数据,让它做出预测,并将对错反馈给它。

nn.LogSoftmax作为最后一层layer时,nn.NLLLoss作为损失函数是合适的。

criterion = nn.NLLLoss()

训练过程的每次循环将会发生:

  • 构建输入和目标张量
  • 构建0初始化的隐藏状态
  • 读入每一个字母
  • 将当前隐藏状态传递给下一字母
  • 比较最终结果和目标
  • 反向传播
  • 返回结果和损失
learning_rate = 0.005 # If you set this too high, it might explode. If too low, it might not learndef train(category_tensor, line_tensor): hidden = rnn.initHidden() rnn.zero_grad() for i in range(line_tensor.size()[0]): output, hidden = rnn(line_tensor[i], hidden) loss = criterion(output, category_tensor) loss.backward() # 将参数的梯度添加到其值中,乘以学习速率 for p in rnn.parameters(): p.data.add_(-learning_rate, p.grad.data) return output, loss.item()

现在我们只需要准备一些例子来运行程序。由于train函数同时返回输出和损失,我们可以打印其输出结果并跟踪其损失画图。由于有1000个 示例,我们每print_every次打印样例,并求平均损失。

import timeimport mathn_iters = 100000print_every = 5000plot_every = 1000# 跟踪绘图的损失current_loss = 0all_losses = []def timeSince(since): now = time.time() s = now - since m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s)start = time.time()for iter in range(1, n_iters + 1): category, line, category_tensor, line_tensor = randomTrainingExample() output, loss = train(category_tensor, line_tensor) current_loss += loss # 打印迭代的编号,损失,名字和猜测 if iter % print_every == 0: guess, guess_i = categoryFromOutput(output) correct = '✓' if guess == category else '✗ (%s)' % category print('%d %d%% (%s) %.4f %s / %s %s' % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct)) # 将当前损失平均值添加到损失列表中 if iter % plot_every == 0: all_losses.append(current_loss / plot_every) current_loss = 0
  • 输出结果:
5000 5% (0m 8s) 2.7792 Verdon / Scottish ✗ (English)10000 10% (0m 16s) 2.0748 Campos / Greek ✗ (Portuguese)15000 15% (0m 25s) 2.0458 Kuang / Vietnamese ✗ (Chinese)20000 20% (0m 33s) 1.1703 Nghiem / Vietnamese ✓25000 25% (0m 41s) 2.6035 Boyle / English ✗ (Scottish)30000 30% (0m 50s) 2.2823 Mozdzierz / Dutch ✗ (Polish)35000 35% (0m 58s) nan Lagana / Irish ✗ (Italian)40000 40% (1m 6s) nan Simonis / Irish ✗ (Dutch)45000 45% (1m 15s) nan Nobunaga / Irish ✗ (Japanese)50000 50% (1m 23s) nan Ingermann / Irish ✗ (English)55000 55% (1m 31s) nan Govorin / Irish ✗ (Russian)60000 60% (1m 39s) nan Janson / Irish ✗ (German)65000 65% (1m 48s) nan Tsangaris / Irish ✗ (Greek)70000 70% (1m 56s) nan Vlasenkov / Irish ✗ (Russian)75000 75% (2m 4s) nan Needham / Irish ✗ (English)80000 80% (2m 12s) nan Matsoukis / Irish ✗ (Greek)85000 85% (2m 21s) nan Koo / Irish ✗ (Chinese)90000 90% (2m 29s) nan Novotny / Irish ✗ (Czech)95000 95% (2m 37s) nan Dubois / Irish ✗ (French)100000 100% (2m 45s) nan Padovano / Irish ✗ (Italian)

3.3 绘画出结果

从all_losses得到历史损失记录,反映了神经网络的学习情况:

import matplotlib.pyplot as pltimport matplotlib.ticker as tickerplt.figure()plt.plot(all_losses)
0016231b371caf332248cfbb9c0824b5.png

4. 评价结果

为了了解网络在不同类别上的表现,我们将创建一个混淆矩阵,显示每种语言(行)和神经网络将其预测为哪种语言(列)。为了计算混淆矩 阵,使用evaluate()函数处理了一批数据,evaluate()函数与去掉反向传播的train()函数大体相同。

# 在混淆矩阵中跟踪正确的猜测confusion = torch.zeros(n_categories, n_categories)n_confusion = 10000# 只需返回给定一行的输出def evaluate(line_tensor): hidden = rnn.initHidden() for i in range(line_tensor.size()[0]): output, hidden = rnn(line_tensor[i], hidden) return output# 查看一堆正确猜到的例子和记录for i in range(n_confusion): category, line, category_tensor, line_tensor = randomTrainingExample() output = evaluate(line_tensor) guess, guess_i = categoryFromOutput(output) category_i = all_categories.index(category) confusion[category_i][guess_i] += 1# 通过将每一行除以其总和来归一化for i in range(n_categories): confusion[i] = confusion[i] / confusion[i].sum()# 设置绘图fig = plt.figure()ax = fig.add_subplot(111)cax = ax.matshow(confusion.numpy())fig.colorbar(cax)# 设置轴ax.set_xticklabels([''] + all_categories, rotation=90)ax.set_yticklabels([''] + all_categories)# 每个刻度线强制标签ax.xaxis.set_major_locator(ticker.MultipleLocator(1))ax.yaxis.set_major_locator(ticker.MultipleLocator(1))# sphinx_gallery_thumbnail_number = 2plt.show()
9d7ba9cd55319d76c3728facb40972df.png

你可以从主轴线以外挑出亮的点,显示模型预测错了哪些语言,例如汉语预测为了韩语,西班牙预测为了意大利。看上去在希腊语上效果很好, 在英语上表现欠佳。(可能是因为英语与其他语言的重叠较多)。

处理用户输入

def predict(input_line, n_predictions=3): print('> %s' % input_line) with torch.no_grad(): output = evaluate(lineToTensor(input_line)) # 获得前N个类别 topv, topi = output.topk(n_predictions, 1, True) predictions = [] for i in range(n_predictions): value = topv[0][i].item() category_index = topi[0][i].item() print('(%.2f) %s' % (value, all_categories[category_index])) predictions.append([value, all_categories[category_index]])predict('Dovesky')predict('Jackson')predict('Satoshi')

输出结果:

> Dovesky(-0.74) Russian(-0.77) Czech(-3.31) English> Jackson(-0.80) Scottish(-1.69) English(-1.84) Russian> Satoshi(-1.16) Japanese(-1.89) Arabic(-1.90) Polish

最终版的脚本in the Practical PyTorch repo (https://github.com/spro/practical-pytorch/tree/master/char-rnn-classification)将上述代码拆分为几个文件:

  • data.py (读取文件)
  • model.py (构造RNN网络)
  • train.py (运行训练过程)
  • predict.py (在命令行中和参数一起运行predict()函数)
  • server.py (使用bottle.py构建JSON API的预测服务)

运行train.py来训练和保存网络

将predict.py和一个名字的单词一起运行查看预测结果 :

$ python predict.py Hazaki(-0.42) Japanese(-1.39) Polish(-3.51) Czech

运行server.py并访问http://localhost:5533/Yourname 得到JSON格式的预测输出

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
4S店客户管理小程序-毕业设计,基于微信小程序+SSM+MySql开发,源码+数据库+论文答辩+毕业论文+视频演示 社会的发展和科学技术的进步,互联网技术越来越受欢迎。手机也逐渐受到广大人民群众的喜爱,也逐渐进入了每个用户的使用。手机具有便利性,速度快,效率高,成本低等优点。 因此,构建符合自己要求的操作系统是非常有意义的。 本文从管理员、用户的功能要求出发,4S店客户管理系统中的功能模块主要是实现管理员服务端;首页、个人中心、用户管理、门店管理、车展管理、汽车品牌管理、新闻头条管理、预约试驾管理、我的收藏管理、系统管理,用户客户端:首页、车展、新闻头条、我的。门店客户端:首页、车展、新闻头条、我的经过认真细致的研究,精心准备和规划,最后测试成功,系统可以正常使用。分析功能调整与4S店客户管理系统实现的实际需求相结合,讨论了微信开发者技术与后台结合java语言和MySQL数据库开发4S店客户管理系统的使用。 关键字:4S店客户管理系统小程序 微信开发者 Java技术 MySQL数据库 软件的功能: 1、开发实现4S店客户管理系统的整个系统程序; 2、管理员服务端;首页、个人中心、用户管理、门店管理、车展管理、汽车品牌管理、新闻头条管理、预约试驾管理、我的收藏管理、系统管理等。 3、用户客户端:首页、车展、新闻头条、我的 4、门店客户端:首页、车展、新闻头条、我的等相应操作; 5、基础数据管理:实现系统基本信息的添加、修改及删除等操作,并且根据需求进行交流信息的查看及回复相应操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值