r语言中残差与回归值的残差图_求:高手用S-PLUS或R对数据OLS回归并作出残差散点图及残差QQ图...

这篇博客探讨了如何在R语言中进行线性回归分析,并通过示例展示了如何绘制残差与回归值的散点图以及残差的QQ图。文中详细列出了回归模型的系数、残差统计和ANOVA表,最后提到了已分享的图表。
摘要由CSDN通过智能技术生成

又是那么简单的问题!?

跟有偿编程那是一个问题吧!?

*** Linear Model ***

Call: lm(formula = DR ~ I + EM + MS + MB + MF + WG + WS + WW, data = xxx.index1,

na.action = na.exclude)

Residuals:

Min      1Q  Median     3Q   Max

-0.8109 -0.4451 -0.0669 0.2338 1.775

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept)  1.4574  1.3537     1.0766  0.2933

I -0.4467  0.1839    -2.4295  0.0237

EM  0.4846  0.1976     2.4525  0.0226

MS -0.0293  0.2377    -0.1233  0.9030

MB  0.0692  0.4642     0.1490  0.8829

MF  0.0784  0.0941     0.8333  0.4136

WG  0.1747  0.3139     0.5566  0.5834

WS  0.3863  0.2563     1.5075  0.1459

WW  0.0345  0.0441     0.7812  0.4430

Residual standard error: 0.7169 on 22 degrees of freedom

Multiple R-Squared: 0.4383

F-statistic: 2.146 on 8 and 22 degrees of freedom, the p-value is 0.07475

Analysis of Variance Table

Response: DR

Terms added sequentially (first to last)

Df Sum of Sq  Mean Sq  F Value     Pr(F)

I  1   0.20260 0.202599 0.394165 0.5365814

EM  1   4.06151 4.061507 7.901850 0.0101774

MS  1   0.80067 0.800673 1.557746 0.2251162

MB  1   0.76497 0.764970 1.488285 0.2353997

MF  1   1.10379 1.103788 2.147470 0.1569519

WG  1   0.69502 0.695020 1.352193 0.2573539

WS  1   0.88246 0.882462 1.716871 0.2036124

WW  1   0.31368 0.313679 0.610278 0.4430091

Residuals 22  11.30788 0.513994

图传给你了!

给我分!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值