excel三次样条函数_R相关与回归学习笔记(三十三)——非参数回归模型、样条平滑...

本笔记中原始数据及代码均来源于李东风先生的R语言教程,在此对李东风先生的无私分享表示感谢。

模型

线性回归模型可以看成非线性回归模型的特例:

b35d68c7b23875819fdd68a539ac0080.png

其中f(x)为未知的回归函数。 参数方法:假定f(x)具有某种形式,如线性回归,二次多项式回归,指数模型等等

二次多项式回归可以令X1=x,X2=x方, 变成二元回归模型来解决。 指数模型可以令x=lnY, 模型化为z=a+bx。 有一些曲线模型可以通过变换化为线性回归。

在多元情形, 一般的非线性回归模型为

e7ad0d7f00823e255f14af0a97db0486.png

但是这样可选的模型就过于复杂, 难以把握。 比较简单的是不考虑变量之间交互作用的可加模型࿱

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
#include <iostream> #include <cmath> #include <fstream> using namespace std; class scyt { float *x,*y,*d,*h,*u,*q,*a,*b,*c,*l,*r,*o,*M; int m; float y0,y3; public: scyt(); void qiudao(); void zgf(); void qiujie(); ~scyt(); }; void main() { scyt hello; hello.qiudao(); hello.zgf(); hello.qiujie(); } scyt::scyt() { ifstream fin("三次样条插值.txt"); for(float j;fin>>j;) { m=int(j); break; } x=new float[m]; y=new float[m]; d=new float[m]; h=new float[m-1]; u=new float[m-2]; q=new float[m-2]; a=new float[m-1]; b=new float[m]; c=new float[m-1]; l=new float[m]; r=new float[m-1];//此处的r为追赶法中的u; o=new float[m];//此处o为追赶法中的y M=new float[m];//此处M为追赶法中的x; int jishu=0; for(j;fin>>j;) { if(jishu<=m-1) x[jishu]=j; if(jishu>m-1&&jishu;<2*m) { y[jishu-m]=j; } if(jishu==2*m) { y0=j; } if(jishu==2*m+1) { y3=j; } jishu++; } fin.close(); } void scyt::qiudao() { for(int i=0;i<m-1;i++) { h[i]=x[i+1]-x[i]; } for(i=0;i<m-2;i++) { u[i]=h[i] / (h[i] + h[i+1]); } for(i=0;i<m-2;i++) { q[i]=1-u[i]; } d[0]=6/h[0]*((y[1]-y[0])/h[0]-y0); for(i=1;i<m-1;i++) { d[i]=6/(h[i-1]+h[i])*((y[i+1]-y[i])/h[i]-((y[i]-y[i-1])/h[i-1])); } d[m-1]=6/h[m-2]*(y3-(y[m-1]-y[m-2])/h[m-2]); } void scyt::zgf() { u[m-2]=1; for(int i=0;i<m;i++) { b[i]=2; } c[0]=1; for(i=1;i<m-1;i++) { c[i]=q[i-1]; } //........................................ l[0]=b[0]; for(i=0;i<m-1;i++) { r[i]=c[i] / l[i]; l[i+1]=b[i+1] - (u[i] * r[i]); } o[0]=d[0] / l[0]; for(i=1;i<m;i++) { o[i]=(d[i]-u[i-1]*o[i-1]) / l[i]; } M[m-1]=o[m-1]; for(i=m-2;i>=0;i--) { M[i]=o[i]-r[i] * M[i+1]; } cout<<m<<"个点的导数值分别是:"<<endl; for(i=0;i<m;i++) { cout<<"M"<<i+1<<"="; cout<<M[i]<<endl; } //M的值求出。。。。。。追赶法调用完毕 } void scyt::qiujie() { float S; for(;;) { float f; cout<<"请输入待求x的值(输入1000)时退出:"; cin>>f; if(f==1000) break; for(int i=0;i<m;i++) { if(f>x[i]&&f<x[i+1]) { S=pow((x[i+1]-f),3)*M[i]/(6*h[i]) + pow(f-x[i],3)*M[i+1]/(6*h[i]) + (x[i+1]-f)*(y[i]-h[i]*h[i]*M[i]/6)/h[i] + (f-x[i])*(y[i+1]-h[i]*h[i]*M[i+1]/6)/h[i]; cout<<"S["<<f<<"]="<<S<<endl; } } } } scyt::~scyt() { delete []x,y,d,h,u,q,a,b,c,l,r,o,M; }
三次样条插值法是一种常用的插值方法,它可以通过给定的数据点,构造出一个光滑的函数曲线,从而对数据进行插值和拟合。但是,在实际应用中,三次样条插值法可能会面临一些问题,需要进行改进。 以下是三次样条插值法可能面临的若干问题以及改进方法: 1. 插值误差问题:由于三次样条插值法是通过多项式曲线拟合数据点,因此在数据点之间进行插值时,可能会产生插值误差,导致插值结果不准确。解决方法是增加插值节点,即增加数据点的数量,或者采用其他插值方法,如分段线性插值、拉格朗日插值等。 2. 边界条件问题:三次样条插值法需要指定边界条件,如一阶导数、二阶导数等。如果边界条件不合适,可能会导致插值结果不光滑或不连续。解决方法是选择合适的边界条件,例如自然边界条件、弯曲边界条件等。 3. 大数据量问题:当数据点数量常大时,三次样条插值法的计算量会常大,导致插值速度变慢。解决方法是采用更高阶的样条插值方法,如五次样条插值法或七次样条插值法,或者采用其他的插值方法,如Kriging插值、径向基函数插值等。 4. 插值函数平滑度问题:三次样条插值法可以构造出光滑的函数曲线,但有时插值函数平滑度可能不够好,导致插值结果不理想。解决方法是采用其他的插值方法,如样条插值法与小波插值法的结合,或者采用其他的光滑函数,如B样条函数、NURBS曲线等。 总之,三次样条插值法是一种常实用的插值方法,但在实际应用中可能会面临一些问题,需要根据具体情况选择合适的改进方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值