图像作为信息的一种表现形式,常常需要进行传输、压缩、降级处理,在很多场景中需要进行处理后的图像相对于原图像的区别,也就是图像质量的评价。通过图像评价,我们可以比较待评价图像和参考图像之间的差异,给出待评价图像的失真程度。
图像质量评价包括基于像素统计的方法和基于结构信息的方法。所谓基于像素统计的方法,就是从整体像素信息的分布进行度量,有点类似直方图算法,从像素值的角度进行刻画。常见的基于像素统计的方法有均方差(MSE)和峰值信噪比(PSNR)。
均方差很容易理解,公式如下:
实际上就是求两幅图像所有像素值的差的平方和的均值。MSE用来评价图像之间的数据的变化程度,值越小,说明待评价图像相对于参考图像来说变化越小,敏感度越小,失真就越小,质量就越好。
在均方差的基础上,进一步有峰值信噪比方法,公式如下:
其中n是每个像素的比特数,一般n等于8,PSNR的单位是dB,它的值越大,失真越小。一般来说,PSNR高于40dB说明图像质量很好,也就是非常接近原始图像,如果20-30说明图像质量差,如果低于20的话,图像就难以接受了。
在工程上,PSNR是普遍接受的和使用最为广泛的图像客观评价方法,由于它是基于误差敏感性的度量方法,刻画图像经过处理之后,图像到达最大的信号噪音比的时候度量。
但是,这种客观上的全局方法,没有考虑到人眼的视觉特性,所以往往通过PSNR得到的结果和人眼的感受是有差异的。因为以下3个因素:
(1)人眼对空间频率较低的对比差异敏感度较高;
(2) 人眼对亮度对比差异性敏感度比较高;
(3)人眼对一个区域的感知结果会受到其周围临近区域的影响。
基于以上3点的人眼主观感受程度,图像质量评价还可以使用结构相似性进行度量,称作SSIM。SSIM涉及到3个公式,如下:
这3个公式,分别对应上面的3个因素,其实l(x,y)对应亮度,c(x,y)对应对比度,s(x,y)对应结构。在公式中,u表示均值,σ2表示方差,σxy表示协方差。可以看出,亮度的度量主要使用均值,对比度度量主要使用方差,结构的度量主要使用协方差(互关系)。进一步的,我们定义SSIM的公式如下:
使α、β、γ都等于1,得到:
其中c1 = (K1L)2,c2 = (k2L)2,是两个常数,避免除零。其中L是像素值的范围,L = 255,默认k1 = 0.01,k2 = 0.03。这样的话,我们就可以使用这个公式进行SSIM计算了。通常在实际应用中,我们会选择一定N*N的邻域,然后在这个邻域内进行计算SSIM,然后将所有计算得到的结果求均值。
以上可见,对图像质量评价时,不同的条件下需要不同的评价算法,需要根据实际的项目需求进行选择。