综述
系统
存在问题 及 指标
评价标准
- rank-k
- CMC
- mAP
学习方法
最终效果(聚类)
外观相似的人会聚类到一起
表征学习 与 度量学习
训练网络需要一个损失函数,表征学习和度量学习就是由损失函数的不同而区分的。
表征学习:通过辅助手段来学习图像的相似度,而不是直接学习。
度量学习:通过网络直接学习出图像的相似度。
- 表征学习:具有分类损失和验证损失。
1.1 分类损失进行训练
1.2 接不同Fc层代表不同的属性以增强训练时的效果。
1.3在测试的时候要把Fc层都丢弃,只用reid特征进行度量相似度
1.4 ?
1.5 总结
- 度量学习 ?怎么训练
2.1 概述
2.1.1对比损失
2.1.2 三元组损失
传统的三元组损失只考虑到相对距离
改进三元组损失(考虑到了正样本之间的绝对距离)
2.1.3 四元组损失
2.1.4 对比
2.2 难样本挖掘
2.2.1 Triplet loss with hard example mining
TriHard loss实现
2.3 特征空间对比
可以看出表征学习不同ID的距离不好区分,可以算夹角度数当距离,也可以把它映射到一个球面当做距离。
2.4 联合训练
特征
- 全局特征
全局特征没有空间信息。
- 局部特征