行人重识别-1

综述

在这里插入图片描述
在这里插入图片描述系统
在这里插入图片描述

存在问题 及 指标

在这里插入图片描述

评价标准

  1. rank-k
    在这里插入图片描述
  2. CMC
    在这里插入图片描述
  3. mAP
    在这里插入图片描述 在这里插入图片描述

学习方法

在这里插入图片描述

最终效果(聚类)

外观相似的人会聚类到一起
在这里插入图片描述

表征学习 与 度量学习

训练网络需要一个损失函数,表征学习和度量学习就是由损失函数的不同而区分的。
表征学习:通过辅助手段来学习图像的相似度,而不是直接学习。
度量学习:通过网络直接学习出图像的相似度。
在这里插入图片描述

  1. 表征学习:具有分类损失和验证损失。
    在这里插入图片描述

1.1 分类损失进行训练
在这里插入图片描述1.2 接不同Fc层代表不同的属性以增强训练时的效果。
在这里插入图片描述1.3在测试的时候要把Fc层都丢弃,只用reid特征进行度量相似度
在这里插入图片描述1.4 ?
在这里插入图片描述1.5 总结
在这里插入图片描述

  1. 度量学习 ?怎么训练

在这里插入图片描述
2.1 概述
在这里插入图片描述2.1.1对比损失
在这里插入图片描述
2.1.2 三元组损失
传统的三元组损失只考虑到相对距离
在这里插入图片描述
改进三元组损失(考虑到了正样本之间的绝对距离)

在这里插入图片描述
2.1.3 四元组损失
在这里插入图片描述

2.1.4 对比
在这里插入图片描述

2.2 难样本挖掘

在这里插入图片描述2.2.1 Triplet loss with hard example mining
在这里插入图片描述TriHard loss实现
在这里插入图片描述在这里插入图片描述在这里插入图片描述2.3 特征空间对比

可以看出表征学习不同ID的距离不好区分,可以算夹角度数当距离,也可以把它映射到一个球面当做距离。
在这里插入图片描述2.4 联合训练
在这里插入图片描述

特征

  1. 全局特征
    全局特征没有空间信息。
    在这里插入图片描述在这里插入图片描述
  2. 局部特征
    在这里插入图片描述
    在这里插入图片描述在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值