绘制精度和损失曲线

程序说明

时间:2019年2月9日

说明:该程序是一个包含两个隐藏层的神经网络,程序会保存每轮训练的acc和loss,并且绘制它们。

数据集:MNIST

1.加载keras模块

from __future__ import print_function
import numpy as np
np.random.seed(1337)  # for reproducibility

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD, Adam, RMSprop
from keras.utils import np_utils
import matplotlib.pyplot as plt
%matplotlib inline


2.写一个LossHistory类,保存loss和acc

class LossHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.losses = {'batch':[], 'epoch':[]}
        self.accuracy = {'batch':[], 'epoch':[]}
        self.val_loss = {'batch':[], 'epoch':[]}
        self.val_acc = {'batch':[], 'epoch':[]}

    def on_batch_end(self, batch, logs={}):
        self.losses['batch'].append(logs.get('loss'))
        self.accuracy['batch'].append(logs.get('acc'))
        self.val_loss['batch'].append(logs.get('val_loss'))
        self.val_acc['batch'].append(logs.get('val_acc'))
        
    def on_epoch_end(self, batch, logs={}):
        self.losses['epoch'].append(logs.get('loss'))
        self.accuracy['epoch'].append(logs.get('acc'))
        self.val_loss['epoch'].append(logs.get('val_loss'))
        self.val_acc['epoch'].append(logs.get('val_acc'))
        
    def loss_plot(self, loss_type):
        iters = range(len(self.losses[loss_type]))
        plt.figure()
        # acc
        plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
        # loss
        plt.plot(iters, self.losses[loss_type], 'g', label='train loss')
        if loss_type == 'epoch':
            # val_acc
            plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
            # val_loss
            plt.plot(iters, self.val_loss[loss_type], 'k', label='val loss')
        plt.grid(True)
        plt.xlabel(loss_type)
        plt.ylabel('acc-loss')
        plt.legend(loc="upper right")
        plt.show()
  1. 变量初始化和数据准备
batch_size = 128 
nb_classes = 10
nb_epoch = 20

# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')


  1. 转换类型号

# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)


5. 建立模型



model = Sequential()
model.add(Dense(512, input_shape=(784,)))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))

#打印模型
model.summary()


6.训练与评估

#编译模型
model.compile(loss='categorical_crossentropy',
              optimizer=RMSprop(),
              metrics=['accuracy'])


#创建一个实例history
history = LossHistory()


  1. 迭代训练(注意这个地方要加入callbacks)
model.fit(X_train, Y_train,
            batch_size=batch_size, nb_epoch=nb_epoch,
            verbose=1, 
            validation_data=(X_test, Y_test),
            callbacks=[history])

fit函数:

fit(self, x, y, batch_size=32, epochs=10, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0)
参数:
x:输入数据。如果模型只有一个输入,那么x的类型是numpy array,如果模型有多个输入,那么x的类型应当为list,list的元素是对应于各个输入的numpy array
y:标签,numpy array
batch_size:整数,指定进行梯度下降时每个batch包含的样本数。训练时一个batch的样本会被计算一次梯度下降,使目标函数优化一步。
epochs:整数,训练终止时的epoch值,训练将在达到该epoch值时停止,当没有设置initial_epoch时,它就是训练的总轮数,否则训练的总轮数为epochs - inital_epoch
verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录
callbacks:list,其中的元素是keras.callbacks.Callback的对象。这个list中的回调函数将会在训练过程中的适当时机被调用,参考回调函数
validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集将不参与训练,并在每个epoch结束后测试的模型的指标,如损失函数、精确度等。注意,validation_split的划分在shuffle之前,因此如果你的数据本身是有序的,需要先手工打乱再指定validation_split,否则可能会出现验证集样本不均匀。
validation_data:形式为(X,y)的tuple,是指定的验证集。此参数将覆盖validation_spilt。
shuffle:布尔值或字符串,一般为布尔值,表示是否在训练过程中随机打乱输入样本的顺序。若为字符串“batch”,则是用来处理HDF5数据的特殊情况,它将在batch内部将数据打乱。
class_weight:字典,将不同的类别映射为不同的权值,该参数用来在训练过程中调整损失函数(只能用于训练)
sample_weight:权值的numpy array,用于在训练时调整损失函数(仅用于训练)。可以传递一个1D的与样本等长的向量用于对样本进行1对1的加权,或者在面对时序数据时,传递一个的形式为(samples,sequence_length)的矩阵来为每个时间步上的样本赋不同的权。这种情况下请确定在编译模型时添加了sample_weight_mode=‘temporal’。
initial_epoch: 从该参数指定的epoch开始训练,在继续之前的训练时有用。

回调函数callbacks

keras.callbacks.Callback()#这是回调函数的抽象类,定义新的回调函数必须继承自该类
回调函数是一组在训练的特定阶段被调用的函数集,你可以使用回调函数来观察训练过程中网络内部的状态和统计信息。通过传递回调函数列表到模型的.fit()中,即可在给定的训练阶段调用该函数集中的函数
【Tips】虽然我们称之为回调“函数”,但事实上Keras的回调函数是一个类,回调函数只是习惯性称呼
类属性
params:字典,训练参数集(如信息显示方法verbosity,batch大小,epoch数)
model:keras.models.Model对象,为正在训练的模型的引用
回调函数以字典logs为参数,该字典包含了一系列与当前batch或epoch相关的信息。
目前,模型的.fit()中有下列参数会被记录到logs中:
在每个epoch的结尾处(on_epoch_end),logs将包含训练的正确率和误差,acc和loss,如果指定了验证集,还会包含验证集正确率和误差val_acc)和val_loss,val_acc还额外需要在.compile中启用metrics=[‘accuracy’]。
在每个batch的开始处(on_batch_begin):logs包含size,即当前batch的样本数
在每个batch的结尾处(on_batch_end):logs包含loss,若启用accuracy则还包含acc

模型评估

model.fit(X_train, Y_train,
            batch_size=batch_size, nb_epoch=nb_epoch,
            verbose=1, 
            validation_data=(X_test, Y_test),
            callbacks=[history])

9. 绘制acc-loss曲线

history.loss_plot(‘epoch’)
在这里插入图片描述

  • 7
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
以下是使用 PyTorch 和 ResNet 进行人脸识别的代码,并绘制训练集和测试集的损失精度曲线图: ```python import torch import torch.nn as nn import torchvision.models as models import matplotlib.pyplot as plt # 加载数据集和定义转换 train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, transform=torchvision.transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, transform=torchvision.transforms.ToTensor()) # 定义数据加载器 batch_size = 100 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 加载 ResNet 模型 resnet = models.resnet18(pretrained=True) # 冻结 ResNet 的所有层 for param in resnet.parameters(): param.requires_grad = False # 将最后一层的输出特征数修改为人脸的类别数 num_classes = 10 resnet.fc = nn.Linear(resnet.fc.in_features, num_classes) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(resnet.fc.parameters()) # 训练模型 num_epochs = 10 total_step = len(train_loader) train_loss = [] test_loss = [] train_acc = [] test_acc = [] for epoch in range(num_epochs): epoch_train_loss = 0 epoch_test_loss = 0 epoch_train_acc = 0 epoch_test_acc = 0 resnet.train() for i, (images, labels) in enumerate(train_loader): images = images.to(device) labels = labels.to(device) outputs = resnet(images) loss = criterion(outputs, labels) epoch_train_loss += loss.item() optimizer.zero_grad() loss.backward() optimizer.step() _, predicted = torch.max(outputs.data, 1) epoch_train_acc += (predicted == labels).sum().item() resnet.eval() with torch.no_grad(): for images, labels in test_loader: images = images.to(device) labels = labels.to(device) outputs = resnet(images) loss = criterion(outputs, labels) epoch_test_loss += loss.item() _, predicted = torch.max(outputs.data, 1) epoch_test_acc += (predicted == labels).sum().item() train_loss.append(epoch_train_loss/len(train_loader)) test_loss.append(epoch_test_loss/len(test_loader)) train_acc.append(epoch_train_acc/len(train_dataset)) test_acc.append(epoch_test_acc/len(test_dataset)) print ('Epoch [{}/{}], Train Loss: {:.4f}, Test Loss: {:.4f}, Train Acc: {:.2f} %, Test Acc: {:.2f} %' .format(epoch+1, num_epochs, train_loss[-1], test_loss[-1], train_acc[-1]*100, test_acc[-1]*100)) # 绘制损失精度曲线图 plt.subplot(2, 1, 1) plt.plot(train_loss, label='Train Loss') plt.plot(test_loss, label='Test Loss') plt.legend() plt.title('Loss') plt.subplot(2, 1, 2) plt.plot(train_acc, label='Train Acc') plt.plot(test_acc, label='Test Acc') plt.legend() plt.title('Accuracy') plt.show() ``` 在这个代码,我们使用了一个预先训练好的 ResNet-18 模型,将其最后一层的输出特征数修改为我们需要分类的类别数,并且只训练了最后一层的参数。在训练期间,我们使用交叉熵损失函数和 Adam 优化器来更新模型的参数,并记录每个 epoch 的训练集和测试集的损失精度。在测试期间,我们使用测试集来评估模型的准确性。最后,我们使用 matplotlib 库绘制训练集和测试集的损失精度曲线图。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值