rms归一化_基于RMS分频的高可懂度语音评价方法

本文提出了一种基于RMS分频的高可懂度语音评价方法,通过相对均方根阈值对语音信号进行分割,评估高于和低于均方值的语音段对可懂度的贡献。实验表明,高均方语音段对可懂度的贡献更大,新评价模型能显著提升评估效果。
摘要由CSDN通过智能技术生成

2018

54

(

21

)

1

引言

语音可懂度是语音信号的一种重要属性。目前很

多研究学者提出大量语音可懂度的评价方法来预测背

景噪声条件下的语音可懂度。传统的语音可懂度客观

SII

(

Speech

Intelligence

Index

)

通过计算每个频带的加权平均值计算语音可懂

度;

基于

LPC

(

Linear

Predictive

Coding

LPC

)

客观评价

方法将原输入信号与处理信号之间的包络差异进行评

估;

加权分段信噪比

(

The

frequency-weighted

segmental

SNR

fwSNRseg

)

方法通过将纯净语音和含噪语音的激

励谱差值进行指数计算;

归一化协方差方法

(

Normalized

Covariance

Metric

NCM

)

方法是基于探头

(输入)

和响

(输出)

的包络信号之间的协方差进行可懂度评估

[1]

有研究提出可懂度评价方法从小部分被选择的包络中

评估失真是足以预测可懂度分数

[2]

。提取携带有更多可

懂度信息的片段进行评估,

将有效提升客观语音可懂度

方法的性能。研究表明,

仅元音句子

(

辅音被噪声取代

)

与纯辅音句子

(元音被噪声取代)

的可懂度比为

2

1

[3]

Tsao

等学者提出利用

RMS

分割的语音片段中高均方根

(

RMS

)

段的语音携带有更多的元音信息

[4]

基于

RMS

分频的高可懂度语音评价方法

飞,

马建芬,

武正平

GAO

Fei,

MA

Jianfen,

WU

Zhengping

太原理工大学

计算机科学与技术学院,

山西

晋中

030600

College

of

Computer

Science

and

Technology,

Taiyuan

University

of

Technology,

Jinzhong,

Shanxi

030600,

China

GAO

Fei,

MA

Jianfen,

WU

Zhengping.

High

speech

intelligibility

evaluation

method

based

on

RMS

frequency

division.

Computer

Engineering

and

Applications,

2018,

54

(

21

)

115-119.

Abstract

Speech

intelligibility

is

an

important

attribute

of

speech

signal.

Based

on

Normalization

Covariance

Metric

(

NCM

)

,

the

speech

signal

is

segmented

with

a

relative

Root

Mean

Square

(

RMS

)

threshold,

The

segmentation

intelligibility

evalu-

ation

is

performed

for

speech

segments

above

the

mean

square

value

and

for

speech

segments

below

the

mean

square

value.

At

the

same

time,

this

paper

presents

a

new

intelligibility

evaluation

model,

which

combines

the

relative

contribution

of

the

two

speech

segments

to

the

intelligibility

of

speech,

and

evaluates

the

intelligibility

of

speech.

The

experimental

results

show

that

the

high-mean

speech

segment

has

a

higher

contribution

to

the

intelligibility

than

the

low-mean

square

speech

segment,

and

the

evaluation

results

of

the

two

speech

segments

are

re-combined

with

the

new

model,

and

the

eval-

uation

effect

is

improved

significantly.

Key

words

speech

intelligibility;

segmentation

intelligibility

evaluation;

relative

root

mean

square;

evaluation

model

要:

语音可懂度是语音信号的一种重要属性

在归一化协方差评价方法

(

NCM

)

的基础之上

以相对均方根

(

RMS

)

为阈值对语音信号进行分割,

对高于均方值的语音段和低于均方值的语音段进行了分段可懂度评估,

同时,

提出了一种新的可懂度评价模型,

结合了这两种语音段对语音可懂度的相对贡献,

共同评价语音的可懂度。实验结

果表明,

高均方语音段相对于低均方语音段对可懂度具有更高的贡献,

利用新的模型将这两种语音段的评价结果进

行重新结合,

评价效果得到了显著提升。

关键词:

语音可懂度;

分段可懂度评估;

相对均方根;

评价模型

文献标志码:

A

中图分类号:

TP391

doi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值