过椭圆外一点引两条切线方程_解析几何专题突破——(十二)常考模型03切线、切点弦与同构式...

切线、切点弦与同构式
一、圆的切线和切点弦
结论一、圆上一点处的切线方 程是;
5d102edc0ae23ef74218a8e57e15bb7d.png
结论二、圆外一点引两条切线 的切点弦方程是;
c4bc69ff66940596c2a9794e1d04dd0b.png
结论三、圆上一点处的切线方程式;

结论四、圆外一点引两条切线的切点弦方程是.

二 、椭圆的切线和切点弦
结论一、椭圆上点处的切线方程是;
75fa63b5647dba2d20722fa68b1412eb.png

【证明】设切点为,因为点在切线上,所以. 椭圆于直线联立方程,消去变量并整理得:

e78ac03492c50cca48a02c6c1e349eb9.png

化简,得

由于直线与椭圆相切,则方程组只有一个根,且该根为,于是

d24b823bdb6ada64366cefff11fa08bb.png

化简,得

fc1b8da302ee0c020e93a976b4e5a33a.png

故可得切线方程为.

结论二、椭圆外一点引两条切线的切点弦方程是.
f7b14524a8e232eb842861444bd08a2c.png

【证明】 设切点坐标为,,则切线,的方程分别为,.

又因为直线,过点,所以

8ca118a9c56d7f9002ebdd4215250c65.png

上面两个式子说明,点,点同时满足直线方程.

因为两点确定一条直线,所以的直线方程是.


这里用到了同构式思想.

我们把结构相同的两个式子或多个式子,称为同构式.

比如和就是一组同构式.

若,则直线的方程为,因为两点定直线.


三、双曲线的切线和切点弦

结论一、双曲线上点处的切线方程是;

结论二、双曲线外一点引两条切线的切点弦方程是.

四、抛物线的切线和切点弦

结论一、抛物线上点处的切线方程是;

【证明】 设切点坐标为,切线方程为,

联立

32b4f9c64b091903d08a2bddcf91331d.png

化简,得

abd48a40f1a4580209f51e2ce285a970.png

因为直线与抛物线相切,所有方程只有一个根,而且这个根是,则

又点在抛物线上,所以,故切线方程为.

结论二、抛物线外一点引两条切线的切点弦方程是.

【证明】 设切点坐标为,,则切线,方程为

,

.

又因为直线过点,所以

同理

.

因此直线方程为

.


练习题:

(2019全国Ⅲ卷21)已知曲线,为直线上的动点,过作的两条切线,切点分别为.

证明:直线过定点.

### 使用 MATLAB 实现计算两焦点位于 X 轴相离椭圆切线方程切点坐标 为了实现这一目标,可以按照如下方法构建算法并编写相应的MATLAB代码: #### 定义椭圆参数 对于两个焦点均在X轴上的标准位置椭圆,其一般形可由给定的半长轴 \(a\)、半短轴 \(b\) 及中心坐标 \((x_0, y_0)\) 来描述。当考虑旋转角度时,则需要额指定长轴相对于X轴的角度 \(\theta\)[^1]。 #### 构建椭圆方程 基于上述参数,可以通过转换矩阵将原始未旋转变换后的单位圆映射到所需的位置方向上形成最终的目标椭圆。具体来说就是利用仿射变换中的平移和平面内绕原点的旋转操作完成此过程。 #### 寻找公共切线 针对已知条件下的两个不交叠椭圆寻找它们之间的共有的切线条数最多有四条;内部则不存在共同内接情况因为这里假设的是完全分离状态。要找到这些直线,一种有效的方法是从几何意义上理解——即每一对这样的线都对应着某一点两条不同曲面上具有相同斜率的方向向量。因此,可通过解联立方程组的方获取满足特定关系的接触点集合从而进一步导出对应的切线表达。 下面给出一段用于解决该问题的核心部分伪代码以及完整的matlab脚本实例: ```matlab function [tangent_lines, tangent_points] = findCommonTangents(ellipse1, ellipse2) % 输入为结构体数组包含各椭圆属性 {a,b,x0,y0,theta} % ... (此处省略初始化和其他辅助函数) syms m c real; % 斜率m和截距c作为未知变量 eqns = []; for i=1:length(tangent_types) type = tangent_types{i}; switch(type) case 'external' % 对于每一个可能类型的切线建立相应约束条件... otherwise error('Unsupported tangent line type'); end append(eqns, solve(constraints)); % 解决当前设定下形成的非线性方程组 end solutions = unique([eqns{:}]); % 移除重复解 tangents = cell(size(solutions)); points = zeros(length(solutions), 4); % 存储四个触碰点(x1,y1,x2,y2) for k=1:numel(solutions) sol = double(subs({m,c}, solutions(k))); tangents{k} = composeLineEquation(sol); points(k,:) = computeContactPoints(sol, ellipse1, ellipse2); end varargout{1}=cellfun(@(line)char(line), tangents,'UniformOutput',false)'; varargout{2}=points; end % 主程序调用入口 ellipses = struct('a',[...],'b',[...], ... 'x0',[...],'y0',[...], 'theta',[...] ); % 用户自定义输入数据集 [tanLines tanPts]=findCommonTangents(ellipses(1,:), ellipses(2,:)); disp('The equations of common external tangents:'); celldisp(tanLines); fprintf('\nCoordinates of contact points:\n'); disp(tanPts); ``` 这段代码展示了如何设置一个通用框架去处理任意给定条件下两个独立分布的标准位姿椭圆形物体间存在的所有潜在连接方之一 —— 部公切现象,并返回具体的解析表示及其关联的实际交汇节点信息。注意实际应用中还需要补充更多细节比如异常检测机制等以确保鲁棒性和准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值