证明 f ( x ) = sin x f(x) = \sin x f(x)=sinx的导数为 f ′ ( x ) = cos x f'(x) = \cos x f′(x)=cosx
已知函数
f ( x ) = sin x f(x) = \sin x f(x)=sinx
画出 f ( x ) f(x) f(x)图像以及 f ′ ( x ) f'(x) f′(x)的图像
因此,我们可以合理的猜测:当 f ( x ) = sin x f(x) = \sin x f(x)=sinx时, f ′ ( x ) = cos x f'(x) = \cos x f′(x)=cosx,下面根据导数的定义来证明
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 sin ( x + h ) − sin ( x ) h = lim h → 0 sin ( x ) cos ( h ) + cos ( x ) sin ( h ) − sin ( x ) h = lim h → 0 [ sin ( x ) ( cos ( h ) − 1 ) + cos ( x ) sin ( h ) h ] = lim h → 0 [ sin ( x ) ( cos ( h ) − 1 h ) + cos ( x ) ( sin ( h ) h ) ] = sin ( x ) ⋅ ( lim h → 0 cos ( h ) − 1 h ) + cos ( x ) ⋅ ( lim h → 0 sin ( h ) h ) \begin{align*} f'(x) &= \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \\ &= \lim_{h \to 0} \frac{\sin(x + h) - \sin(x)}{h} \\ &= \lim_{h \to 0} \frac{\sin(x) \cos(h) + \cos(x) \sin(h) - \sin(x)}{h} \\ &= \lim_{h \to 0} \left[ \frac{\sin(x) (\cos(h) - 1) + \cos(x) \sin(h)}{h} \right] \\ &= \lim_{h \to 0} \left[ \sin(x) \left( \frac{\cos(h) - 1}{h} \right) + \cos(x) \left( \frac{\sin(h)}{h} \right) \right] \\ &= \sin(x) \cdot \left( \lim_{h \to 0} \frac{\cos(h) - 1}{h} \right) + \cos(x) \cdot \left( \lim_{h \to 0} \frac{\sin(h)}{h} \right) \end{align*} f′(x)=h→0limhf(x+h)−f(x)=h→0limhsin(x+h)−sin(x)=h→0limhsin(x)cos(h)+cos(x)sin(h)−sin(x)=h→0lim[hsin(x)(cos(h)−1)+cos(x)sin(h)]=h→0lim[sin(x)(hcos(h)−1)+cos(x)(hsin(h))]=sin(x)⋅(