微积分-导数4(三角函数的导数)

证明 f ( x ) = sin ⁡ x f(x) = \sin x f(x)=sinx的导数为 f ′ ( x ) = cos ⁡ x f'(x) = \cos x f(x)=cosx

已知函数
f ( x ) = sin ⁡ x f(x) = \sin x f(x)=sinx
画出 f ( x ) f(x) f(x)图像以及 f ′ ( x ) f'(x) f(x)的图像
在这里插入图片描述
因此,我们可以合理的猜测:当 f ( x ) = sin ⁡ x f(x) = \sin x f(x)=sinx时, f ′ ( x ) = cos ⁡ x f'(x) = \cos x f(x)=cosx,下面根据导数的定义来证明
f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h = lim ⁡ h → 0 sin ⁡ ( x + h ) − sin ⁡ ( x ) h = lim ⁡ h → 0 sin ⁡ ( x ) cos ⁡ ( h ) + cos ⁡ ( x ) sin ⁡ ( h ) − sin ⁡ ( x ) h = lim ⁡ h → 0 [ sin ⁡ ( x ) ( cos ⁡ ( h ) − 1 ) + cos ⁡ ( x ) sin ⁡ ( h ) h ] = lim ⁡ h → 0 [ sin ⁡ ( x ) ( cos ⁡ ( h ) − 1 h ) + cos ⁡ ( x ) ( sin ⁡ ( h ) h ) ] = sin ⁡ ( x ) ⋅ ( lim ⁡ h → 0 cos ⁡ ( h ) − 1 h ) + cos ⁡ ( x ) ⋅ ( lim ⁡ h → 0 sin ⁡ ( h ) h ) \begin{align*} f'(x) &= \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \\ &= \lim_{h \to 0} \frac{\sin(x + h) - \sin(x)}{h} \\ &= \lim_{h \to 0} \frac{\sin(x) \cos(h) + \cos(x) \sin(h) - \sin(x)}{h} \\ &= \lim_{h \to 0} \left[ \frac{\sin(x) (\cos(h) - 1) + \cos(x) \sin(h)}{h} \right] \\ &= \lim_{h \to 0} \left[ \sin(x) \left( \frac{\cos(h) - 1}{h} \right) + \cos(x) \left( \frac{\sin(h)}{h} \right) \right] \\ &= \sin(x) \cdot \left( \lim_{h \to 0} \frac{\cos(h) - 1}{h} \right) + \cos(x) \cdot \left( \lim_{h \to 0} \frac{\sin(h)}{h} \right) \end{align*} f(x)=h0limhf(x+h)f(x)=h0limhsin(x+h)sin(x)=h0limhsin(x)cos(h)+cos(x)sin(h)sin(x)=h0lim[hsin(x)(cos(h)1)+cos(x)sin(h)]=h0lim[sin(x)(hcos(h)1)+cos(x)(hsin(h))]=sin(x)(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值