一、三角函数的概念
单位圆定义:设起点在原点的射线,与x轴正半轴形成一个角θ,并与单位圆(x2+y2=1)相交。这个交点的横坐标值和纵坐标值分别等于cosθ和sinθ。
单位圆定义允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2弧度之间的角。逆时针方向的度量是正角,而顺时针的度量是负角,对于大于2π或小于-2π的角,可继续绕单位圆旋转得到。
如:角α的终边经过点P(3,-4),则cosα=3/5。
二、三角函数的诱导公式
任意角的三角函数均可与第一象限角的三角函数相互转化。
(奇变偶不变,符号看象限)

诱导公式可以概括为:对于kπ/2±α(k∈Z)的三角函数值,当k是偶数时,得到α的同名函数值,即函数名不改变;当k是奇数时,得到α相应的余函数值sin→cos;cos→sin;tan→cot;cot→tan。(奇变偶不变),然后在前面加上把α看成锐角时原函数值的符号(符号看象限)。
如:sin(-2π-α)=sin(-4·π/2-α),k=-4为偶数,所以取sin;α看成锐角时,-2π