先验概率和后验概率_贝叶斯方法理解(1)— 从先验到后验

本文介绍了贝叶斯方法与频率学派的区别,并详细阐述了似然函数、贝叶斯公式及其应用。通过实例展示了如何使用先验知识结合新数据计算后验概率,以不断更新对未知参数的认识。最后强调了先验知识在贝叶斯统计中的作用,以及在不同样本量下如何权衡先验和后验信息。
摘要由CSDN通过智能技术生成

8949498788fc8ec6f4b2a94d18e090d2.png

这一学期学了贝叶斯统计,因此想在这里结合上课内容和个人的理解做一个总结。我将把所有内容拆分为几个部分分别展开,如有问题,还请大家不吝赐教。

第一篇主要聊一聊贝叶斯学派和频率学派的区别,以及一些贝叶斯方法最重要的概念,后验分布的计算。


引言

贝叶斯方法和频率学派方法的区别,能找的的比较多的解释是,“他们看待世界的方式不相同,获得了一组随机样本,频率学派认为总体的参数是不变的,样本是随机获取的;而贝叶斯学派认为总体参数是随机的,而获样本是不变的。”频率学派的观点很像柏拉图的实在论一样,因此大部分人举例的时候喜欢用上帝视角来解释(上帝才知道真实的均值)。如果总体参数固定,那么随机获得的样本就是理想实体的不完美映射。相应的,如果获得了这些样本(证据),利用极大似然法,推断出获得这些样本最有可能的参数。直观的反驳就是,如果刚好这些样本取自概率较小的值,比如中彩票了,那推断出来的参数不就有问题了吗?因此就解释结果而言,频率学派的概念比如置信区间,p值等都应该是‘long run conclusion’,也就是结论应该结合‘如果实验一直做下去’,比如,95%置信区间的含义是,如果做100次实验得出100个置信区间,那么有大约95个包含真实参数。

相比之下,贝叶斯学派不太关心正确的参数到底是多少,而是需要通过获取的数据加上先验知识得出后验概率进行统计推断。比如想推断学校的男女比例,随机抽样了10个人,其中2男8女,频率学派会得出男生占20%的结论,因为样本就是证据,有且仅有的证据。当然,如果样本量更大,那肯定更接近于真实值,但在现实生活中,有时候样本的获取成本非常高,或者因为各种原因无法获取。贝叶斯方法则会考虑先前经验,比如前几年的调查数据,或者专家知识(这是一所理工大学,男女比例1:9)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值