对数似然函数(log likelihood)
机器学习里面,对模型的训练都是对Loss function进行优化,在分类问题中,我们一般使用最大似然估计(Maximum likelihood estimation)来构造损失函数。对于输入的x,其对应的类标签为t,我们的目的是找到使p(t|x)最大的模型f(x),y=f(x)为模型的预测值。
在二分类问题中:
可以看到,多分类问题中,上述通过最大似然估计得到的损失函数与通过交叉熵得到的损失函数相同。
参考:https://blog.csdn.net/qq_38469553/article/details/83860335