展开全部
COSa=3/13,COSb=4/13,COSc=12/13。具体做法如下:
首先3*3+4*4+12*12=169,所以求出向62616964757a686964616fe59b9ee7ad9431333366303162量R的模为根号169,即向量R的模为13。
然后根据通用公式依次求出COSa,COSb和COSc(分母就是13)。
普遍求解方式:
设:A(x1,y1,z1),B(x2,y2,z2).
向量AB的方向余弦={(x2-x1)/d,(y2-y1)/d.(z2-z1)/d}
其中,d=|AB|=√[(x2-x1)²+(y2-y1)²+(z2-z1)²],(x2-x1)/d=cosα.,(y2-y1)/d=cosβ..(z2-z1)/d=cosγ。
其中:α,β,γ是向量AB分别与x轴。y轴,z轴所成的夹角[0≤α,β,γ≤π],故称方向向量。
扩展资料:
相关向量:
①负向量
如果向量AB与向量CD的模相等且方向相反,那么我们把向量AB叫做向量CD的负向量,也称为相反向量。
数学中,既有大小又有方向的量叫做向量(亦称矢量)。
注:在线性代数中的向量是指n个实数组成的有序数组,称为n维向量。α=(a1,a2,…,an) 称为n维向量.其中ai称为向量α的第i个分量。("a1"的"1"为a的下标,"ai"的"i"为a的下标,其他类推)。
②零向量
长度为0的向量叫做零向量,记作0。零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。
向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。
③相等向量
长度相等且方向相同的向量叫做相等向量。向量a与b相等,记作a=b。
规定:所有的零向量都相等。
当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.同向且等长的有向线段都表示同一向量。
④自由向量
始点不固定的向量,它可以任意的平行移动,而且移动后的向量仍然代表原来的向量。