二阶有限差分三对角matlab,【毕业设计(论文)】二维热传导方程有限差分法的MATLAB实现...

111.png

因此有G(?t,k)?1,即差分格式(4.6)是绝对稳定的。

为了提高精度,对微分方程(4.1)也可以用Crank-Nicolson型差分格式,这也是一维问题的直接推广。其格式可写为

?1nun?ujljl2n?1n2n?1n?ta?x(ujl?ujl)?y(ujl?ujl)?[?], (4.7) 222?x?y这也是二阶精度格式,其增长因子是

2k1h21?2a?sin?2a?sin2G(?t,k)?2k1h21?2a?sin?2a?sin2k2h2,k2h 2因此,对任何?都有G(?t,k)?1,所以(4.7)式也是绝对稳定的。

现在考虑一下隐式格式(4.6)式和(4.7)式的求解方法。我们知道,在一位格式形成的方程组是系数矩阵为三对角矩阵的线性代数方程组,因此用追赶法很容易求解。而对于(4.6)式和(4.7)式导出的系数矩阵不是三对角矩阵,因此求解就不容易了。

我们对于显式格式和隐式格式的分析知道,在实际使用上都受到限制,因此构造每层计算量不大的绝对稳定的格式就成为一个具有现实意义并很有兴趣的问题。在一维中,隐式格式是绝对稳定并可用追赶法很容易求解。由此产生了下面将使用的交替方程隐式格式。它具有绝对稳定、容易求解和有相当精度的特点。

4.3 建立方程组

22?u?u我们在构造微分方程(4.1)的隐式格式和显式格式中,对2和2做了同样的

?x?y2?u处理,即同时在第n层或第n?1层取值。为了构造一维形式的隐式格式,对二阶导数2?x2?u用u在第n?1层上用未知的二阶中心差分来代替,而2则用u在第n层上用已知的二

?y阶中心差分来代替,这样得到

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值