龙格现象python程序_基于切比雪夫多项式的函数插值逼近

本文介绍了基于切比雪夫多项式的函数插值逼近方法,详细讨论了切比雪夫多项式的性质,并提供Python语言实现代码。针对龙格现象,文章阐述了其在函数逼近中的影响,结合Python编程实现,为工程和技术领域的函数插值提供了实用的解决方案。
摘要由CSDN通过智能技术生成

基于切比雪夫多项式的函数插值逼近

王先传

a

,江

b

,赵

a

,张

a

【摘

要】

函数插值逼近经常应用于工程和技术领域。逼近效果不仅受算法影响,

还与采用何种函数逼近有关。本文首先给出切比雪夫多项式的定义,讨论了其

有关性质。而后重点论述了如何基于切比雪夫多项式的函数插值逼近,同时给

出相应的

Python

语言代码。

【期刊名称】

阜阳师范学院学报(自然科学版)

【年

(

),

期】

2017(034)004

【总页数】

6

【关键词】

插值逼近;

Python

;切比雪夫多项式;龙格现象

https://www.zhangqiaokeyan.com/academic-journal-cn_journal-fuyang-normal-

university-natural-science_thesis/0201249208448.html

在许多工程和技术领域经常用到函数逼近、插值与拟合算法。除了最常用的最

小二乘法,函数插值逼近方法还有构造有理函数

[1]

、神经网络

[2]

等。但这些方

法实现起来比较复杂,而且比较效果也不够理想。另一方面,近年来切比雪夫

多项式无论在理论还是在应用方面都也得到了较广泛的研究

[3-8]

。同时,伴随

着数据科学的发展,

Python

语言也得到空前的发展。为此,本文将讨论如何

基于切比雪夫多项式运用

Python

语言进行函数插值逼近。

1 Python

简介

Guido

van

Rossum

1989

年发明的

Python

是一种解释型、面向对象、跨

平台、动态高级编程语言

[9]

。随着大数据的发展,目前它已成为当今世界最受

欢迎的计算生态语言。由于该语言简洁、易读、易学、好用,开设该语言的高

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值