python中digits用法_在docker容器中python3.5环境下使用DIGITS训练caffe模型

本文档详细介绍了如何在Docker容器内,基于nvcr.io/nvidia/digits:18.06镜像,配置CUDA9和CUDNN7环境,用于Python3.5下编译Caffe并使用DIGITS训练模型。首先,通过更新Python默认版本至3.5,然后编译安装Caffe,处理编译过程中遇到的问题。接着,将Caffe的Python接口添加到环境变量,并升级及安装DIGITS的Python3版本。最后,启动DIGITS服务并进行模型训练。
摘要由CSDN通过智能技术生成

*********

此处使用的基础镜像为 nvcr.io/nvidia/digits:18.06,镜像大小为6.04GB,可从nvidia官方pull此镜像;

容器配置:

CUDA:9.0

CUDNN:7.0

注:此文档建立在已会使用python2.7版本的DIGITS基础之上

使用CUDA9是因为要使用tensorflow_hub,版本需要兼容

tensorflow-gpu==1.12.0

tensorflow-hub==0.5.0

镜像中含有python3.5与python2.7两个版本,直接使用python3.5

修改系统python默认值,使用python3为默认启动:

sudo update-alternatives --install /usr/bin/python python /usr/bin/python2 100

sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 150

*********

一、编译安装caffe

从github下载caffe源码,准备编译,下载地址:https://github.com/BVLC/caffe.git

【CUDA与CUDNN请查找对应的安装教程,此处忽略】

进入caffe目录

1、安装依赖:

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler

sudo apt-get install —no-install-recommends libboost-all-dev

sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev

sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

2、修改Makefile.config文件:

sudo cp Makefile.config.example Makefile.config

根据需求修改Makefile.config中的内容,我修改之后的内容如下:

## Refer to http://caffe.berkeleyvision.org/installation.html

# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).

USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).

# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers

USE_OPENCV := 1

# USE_LEVELDB := 0

# USE_LMDB := 0

# T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值