keras提取模型中的某一层_keras K.function获取某层的输出操作

本文介绍了如何利用Keras的backend功能`K.function`来提取预训练模型的特定层输出。首先加载模型,然后通过`get_input_at`和`get_layer`方法指定输入和输出层,最后调用`K.function`获取输出。同时,文章提到了错误处理,如将输入包装为列表以避免TypeError,并展示了`K.function`的源码和Function类的定义。
摘要由CSDN通过智能技术生成

如下所示:

from keras import backend as K

from keras.models import load_model

models = load_model('models.hdf5')

image=r'image.png'

images=cv2.imread(r'image.png')

image_arr = process_image(image, (224, 224, 3))

image_arr = np.expand_dims(image_arr, axis=0)

layer_1 = K.function([base_model.get_input_at(0)], [base_model.get_layer('layer_name').output])

f1 = layer_1([image_arr])[0]

加载训练好并保存的网络模型

加载数据(图像),并将数据处理成array形式

指定输出层

将处理后的数据输入,然后获取输出

其中,K.function有两种不同的写法:

1. 获取名为layer_name的层的输出

layer_1 = K.function([base_model.get_input_at(0)], [base_model.get_layer('layer_name').output])

#指定输出层的名称

2. 获取第n层的输出

layer_1 = K.function([model.get_input_at(0)], [model.layers[5].output])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值