自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

原创 云顶之弈阵容助手-基于遗传算法

LOL云顶之弈人工智障助手概述爬取相关网站内容获取英雄信息阵容搭配与得分遗传算法设计运行结果完整代码——Github欢迎star 概述 本人云顶新手,好多年不玩LOL了,被朋友安利云顶之弈,玩了两天觉得有点意思。但是这个游戏阵容可搭配太多了,如果不是天天研究这个游戏的,很难吃鸡。所以我就心血来潮想...

2019-10-07 15:25:16

阅读数 5564

评论数 12

原创 【机器学习】pytorch中Dataloader的坑

基于pytorch训练一个模型,数据集size大概七十万 训练起来很慢 疯狂找原因,后来经过一行行调试,发现是遍历Dataloader时太慢了 正在寻找解决办法。。(待更新2020.1.5) ...

2020-01-05 05:43:28

阅读数 9

评论数 0

原创 C++ 栈

stack是STL中实现先进后出的容器。 类似冰糖葫芦,先串进去的最后才能吃到 1.使用 #include<stack>; 定义方法与其他容器相同,typename可以任意基本类型数据类型或容器 stack name; 2.访问元素 由于先进后出的特性,栈只能访问最顶部的元素,好比你...

2019-12-13 17:26:10

阅读数 3

评论数 0

原创 C++ map用法

C++ map的基本操作函数: C++ maps是一种关联式容器 关键字/值 方法 用途 begin() 返回指向map头部的迭代器 clear() 删除所有元素 count() 返回指定元素出现的次数 empty() 如果map为空则返回true end() 返回...

2019-11-28 23:28:06

阅读数 21

评论数 0

转载 C++ 经常会用到的 . 和 :: 和 : 和 ->

在学习C++的过程中我们经常会用到.和::和:和->,在此整理一下这些常用符号的区别。 1、A.B则A为对象或者结构体; 2、A->B则A为指针,->是成员提取,A->B是提取A中的成员B,A只能是指向类、结构、联合的指针; 3、::是作用域运算符,A::B表示作用域A...

2019-11-26 20:46:11

阅读数 8

评论数 0

原创 大内存使用多进程的踩坑记录

服务器信息: ​ 系统版本:Linux vm172-31-0-3.ksc.com 3.10.0-693.11.6.el7.x86_64 ​ CPU核心数:28 ​ 内存大小:56 GB ​ 硬盘大小:约1TB 脚本介绍: ​将固定站点污染物信息插值到等经纬度网格(1400*1000)上 问...

2019-11-22 09:43:40

阅读数 6

评论数 0

原创 【人脸检测】FaceBoxes论文阅读与效果

【人脸检测】FaceBoxes论文阅读与效果展示Introduction网络结构1.Rapidly Digested Convolutional Layers2.Mutiple Scale Convolutional Layers3.Anchor densification strategy训练运...

2019-10-31 12:14:52

阅读数 15

评论数 0

原创 softmax函数及交叉熵损失函数求导

1.softmax函数 使用softmax函数主要是为了解决多分类问题,在一个分类神经网络中,该函数能够将多个神经元的输出转换到(0,1)之间,可以当概率来理解,这样就可以取其中最大值当做被分到哪一类。 假设一组神经元的输出为a[n]a[n]a[n],那么pip_ipi​就可以表示为: pi=ea...

2019-08-25 05:41:20

阅读数 15

评论数 0

原创 【python】set 列表去重、交集、并集、差集

1、去重:set a = [1,2,3,3,3] b = set(a) print(b) {1,2,3} 2、交集:&、set.intersection() a = set([1,2,3,4,5]) b = set([4,5,6,7,8]) c = a&b print(c) {4...

2019-07-26 16:23:28

阅读数 17

评论数 0

原创 【机器学习】logistic回归公式推导及python代码实现

代价函数得来 首先确定: hθ(x)=g(θTx)=11+e−θTx h_{\theta}(x)=g\left(\theta^{T} x\right)=\frac{1}{1+e^{-\theta^{T} x}} hθ​(x)=g(θTx)=1+e−θTx1​ 函数hθ(x)h_{\theta}(x...

2019-07-23 10:02:39

阅读数 26

评论数 0

转载 Gamma校正原理及python实现

Gamma校正原理:   假设图像中有一个像素,值是 200 ,那么对这个像素进行校正必须执行如下步骤:   1. 归一化 :将像素值转换为0 ~ 1之间的实数。 算法如下 : ( i + 0. 5)/256这里包含 1 个除法和 1 个加法操作。对于像素A而言, 其对应的归一化值为0. 7832...

2019-07-06 00:37:52

阅读数 417

评论数 0

原创 python assert断言 的使用

python中assert的使用 写代码过程中经常遇到需要调试的时候,而assert就是一种简单高效的调试方法 比如写了一个add()函数,但是你不知道写的对不对,这时候需要对刚写完的函数进行调试 assert就可以派上用场了 def add(a,b): return a+b def wron...

2019-06-25 15:37:04

阅读数 21

评论数 0

转载 python 利用numpy进行拟合

链接:http://blog.sina.com.cn/s/blog_aed5bd1d0102vid7.html import matplotlib.pyplot as plt import numpy as np x = np.arange(1, 17, 1) y = np.array([4...

2019-06-23 17:52:45

阅读数 108

评论数 0

原创 【keras】models.load_model() 报错问题 Unknown entry in loss dictionary:

在试用tf2.0.keras建立的一个简单的神经网络时,发现模型保存之后重新加载会出问题 代码如下: # 创建模型 inputs = tf.keras.Input(shape= (17,),name= 'inputs') hidden_1 = layers.Dense(4...

2019-06-13 01:52:02

阅读数 377

评论数 0

原创 python re正则表达式学习

有需求把类似 世界时 ‘2019-06-06-00’ 与北京时 ‘2019/06/06 08:00’ 这样的进行匹配 虽然可以if else + 索引去改,但是刚好想学一下正则表达式,就记录一下 re.match(pattern, string, flags=0) 参数 描述 pa...

2019-06-09 17:05:25

阅读数 17

评论数 0

原创 【python爬虫学习】cookie模拟登陆

近期学校要求登陆一个网站学习,要计算在线时长,长时间不对这个页面进行操作的话就会停止计时。就想着能不能写个程序模拟登陆并进行一些操作。 模拟登陆的话有很多方法,因为有验证码比较麻烦,所以我是自己先登陆一下,抓取cookie给程序用。 首先F12,再登陆一下网站,选择Network,看到下图 ...

2019-04-28 16:06:03

阅读数 38

评论数 0

原创 【机器学习】 XGBoost算法梳理

前言:XGBoost原理上跟普通GBDT一样,都属于集成算法中的boost类。boost的原理可以看我的另外两篇介绍集成学习的文章,这里不多赘述。所以这篇文章主要在XGB与普通GBDT不同之处进行讨论。 1.损失函数 XGB的损失函数是支持自定义的,只要满足二阶可导即可。 XGB的损失函数除...

2019-04-10 21:40:06

阅读数 48

评论数 0

原创 【机器学习】 前向分布算法与GBDT算法梳理

1.前向分布算法 基本思想:每次只学习一个基函数及系数,逐步逼近最优解。 如下所示: 其中为基函数,为基函数系数,为基函数的参数,这样只需要给定训练集与损失函数 就可以利用最小化损失函数的原理进行学习,这样每次新一轮的学习只需要学习一个基函数的参数与对应的系数。 一个栗子:小明有10...

2019-04-07 02:30:10

阅读数 114

评论数 0

原创 【机器学习】集成学习的概念与随机森林算法梳理

1. 集成学习概念 “三个臭皮匠,顶个诸葛亮”思想 “弱可学习”等价于“强可学习” —— Schapire 可以理解为就是指采用多个分类器对数据集进行预测,从而提高整体分类器的泛化能力。 集成学习有两个流派 一个是boosting派系,它的特点是各个弱学习器之间有依赖关系。 另一种是baggin...

2019-04-03 21:50:00

阅读数 104

评论数 0

提示
确定要删除当前文章?
取消 删除