tansig与tanh激活函数

发现matlab一个比较奇怪的地方
之前刚接触神经网络的时候是用的matlab,选用激活函数的时有sigmoid,tansig等等
后面转其他平台设计网络的时候发现再也没见过tansig函数?
看着tanh和tansig比较像又不敢确定,于是心血来潮搜一下
发现网上根本没人比较这两个东西…就更好奇了
查了公式,matlab的tansig表达式是:
2 1 + e − 2 x − 1 \frac{2}{1+e^{-2x}}-1 1+e2x21
而看pytorch中tanh的表达式又都是:
e x − e − x e x + e − x \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} ex+exexex
懵逼,但是有了一个大胆的想法。
虽然本人数学底子差,但还是推导了一下
发现是一样的。。。
matlab党和python党还是得多交流啊,不然容易出现“生殖隔离”

### 回答1: 在 MATLAB 中,我们可以使用 newff 函数来创建一个前馈神经网络,并设置激活函数激活函数是神经网络中非常重要的一部分,它通常用于模拟神经元的工作方式,以及计算网络输出和误差。 newff 函数默认激活函数为 Sigmoid 激活函数。如果需要设置其他激活函数,可以使用 setwb 函数。例如,如果需要设置 Tanh 激活函数,则可以按照以下步骤进行操作: 1. 创建前馈神经网络 net = newff(inputs, targets, hidden_layers, {'tansig', 'purelin'}, 'trainlm'); 其中,inputs 表示输入层节点数;targets 表示输出层节点数;hidden_layers 是一个数组,表示每个隐藏层的节点数;{'tansig', 'purelin'} 表示每个层的激活函数,第一个元素表示隐藏层的激活函数,第二个元素表示输出层的激活函数;'trainlm' 表示使用 Levenberg-Marquardt 优化算法进行训练。 2. 设置 Tanh 激活函数 net.layers{1}.transferFcn = 'tansig'; 其中,'tansig' 表示 Tanh 激活函数,{1} 表示第一个隐藏层。 3. 训练网络并预测 训练和预测的具体方法可以根据实际需求选取,例如使用 trainlm 函数进行训练,使用 sim 函数进行预测。 综上所述,我们通过创建前馈神经网络和设置激活函数,可以使用 MATLAB 实现神经网络的训练和预测,并根据实际需求选择合适的激活函数。 ### 回答2: 在MATLAB中,使用神经网络的时候,需要设置激活函数激活函数决定了神经元之间的信号传递。通常来说,MATLAB使用的是sigmoid激活函数,但是可以通过设置newff函数的参数来选择其他不同的激活函数。 newff函数的语法如下: net = newff(P,T,S,TF,BTF,PF,IPF,OPF) 其中,TF参数表示的是网络中非输出神经元的激活函数类型,而OPF参数则表示了输出神经元的激活函数类型。 常见的激活函数有sigmoid函数、ReLU函数和tanh函数。 sigmoid函数的数学表达式为: sigmoid(x) = 1 / (1 + exp(-x)) ReLU函数的数学表达式为: ReLU(x) = max(0,x) tanh函数的数学表达式为: tanh(x) = ( exp(x) - exp(-x) ) / ( exp(x) + exp(-x) ) 其中,x表示输入的神经元输入值。 这些不同的激活函数具有不同的特点和适用场景,因此需要根据具体应用场景来选择适合的激活函数。在选择激活函数的过程中,需要考虑到应用的需求,在网络的训练和调试的过程中,可以根据效果的反馈来不断地进行调整和优化。 总的来说,matlab中newff函数的激活函数设置比较灵活,可以根据不同的需求选择适合的激活函数,以提高神经网络的性能和效果。 ### 回答3: 在MATLAB中,newff函数是构建神经网络的工具。在神经网络中,激活函数是非常重要的一部分。在newff函数中,可以设置不同的激活函数来实现不同的神经网络模型。下面是关于newff函数中激活函数设置的详细说明。 在newff函数中,可以通过指定net.trainFcn来设置激活函数。在MATLAB中,常见的激活函数包括sigmoid(sigmoid函数)、tansig(双曲正切函数)、purelin(线性函数)和logsig(逻辑函数)等。不同的激活函数有不同的性质,可以实现不同的神经网络模型。 例如,如果要创建一个使用sigmoid激活函数的神经网络模型,可以设置如下: ```matlab net = newff(minmax(P),[10 1],{'sigmoid','purelin'},'traingd'); ``` 其中,'sigmoid'指定了隐藏层的激活函数,'purelin'指定了输出层的激活函数。如果要创建一个使用双曲正切函数(tansig)作为激活函数的神经网络模型,可以设置如下: ```matlab net = newff(minmax(P),[10 1],{'tansig','purelin'},'traingd'); ``` 除了以上所列举的激活函数外,还有一些其他的激活函数可供选择。例如,可以使用softmax函数来进行多分类问题的神经网络建模,还可以使用radbas函数来构建基于径向基函数的神经网络模型等。 总之,在使用newff函数构建神经网络时,选择适当的激活函数非常重要,可以直接影响神经网络模型的性能。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值